Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.
28 Oct 2024
\[\begin{align*} \displaystyle\boxed{\log_a b = x \text{ is equivalent to } a^x = b} \end{align*}\]
What is $\log_a b$?
This expression reads “log base a of b”. In mathematics, $\log_a b$ is called the logarithm of $b$ with base $a$. The logarithm $\log_a b$ answers the question:
“What power do we need to raise $a$ to, in order to get $b$?”
\[\begin{align*} \displaystyle\log_a b = x \quad \text{means that} \quad a^x = b \end{align*}\]
In other words, $\log_a b = x$ means that when we raise $a$ to the power $x$, we get $b$:
\[\begin{align*} \displaystyle a^x = b \end{align*}\]
Example. Compute $\log_5 125$.
Thus,
\[\begin{align*} \log_5 125 = 3 \end{align*}\]
Key Points to Remember:
\[\begin{align*} \displaystyle\boxed{\log_a b = x \text{ is equivalent to } a^x = b} \end{align*}\]
Similarly,
\[\begin{align*}\displaystyle\log_{0.5} 2 = -1 \quad \text{because} \quad (0.5)^{-1} = 2 \\ \displaystyle\log_{2} 32 = 5 \quad \text{because} \quad 2^5 = 32 \\ \displaystyle\log_{3} 81 = 4 \quad \text{because} \quad 3^4 = 81\\ \displaystyle\log_{12} 1 = 0 \quad \text{because} \quad 12^0 = 1 \\ \end{align*}\]