• Integrals
  • Understanding the Integral of e2x e^{2x}

Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.

Understanding the Integral of e2x e^{2x}

e2xdx=12e2x+C\begin{align*} \boxed{\int e^{2x} \, dx = \dfrac{1}{2} e^{2x} + C} \end{align*}

where C C is the constant of integration.

Step-by-Step Solution:

In this article, we’re going to explore how to find the integral of e2x e^{2x} . The function e2x e^{2x} involves the exponential base e e raised to the power of 2x 2x . Integrating this type of function involves using uu-substitution to simplify the exponent.

e2xdx\begin{align*} \int e^{2x} \, dx \end{align*}

Since 2x 2x is in the exponent, we’ll use a substitution to simplify it as we know the common integral exe^x.

Let:

u=2x\begin{align*} u = 2x \end{align*}

Differentiating u u with respect to x x :

dudx=2dx=du2\begin{align*} \dfrac{du}{dx} = 2 \Rightarrow dx = \dfrac{du}{2} \end{align*}

Rewriting the integral in terms of u u :

e2xdx=eudu2\begin{align*} \int e^{2x} \, dx = \int e^{u} \cdot \dfrac{du}{2} \end{align*}

This simplifies to:

12eudu\begin{align*} \dfrac{1}{2} \int e^{u} \, du \end{align*}

The integral of eu e^{u} is simply eu e^{u} , so we have:

12eu+C\begin{align*} \dfrac{1}{2} e^{u} + C \end{align*}

Finally, substitute u=2x u = 2x back into the expression:

12e2x+C\begin{align*} \dfrac{1}{2} e^{2x} + C \end{align*}

So, the integral of e2x e^{2x} is:

e2xdx=12e2x+C\begin{align*} \boxed{\int e^{2x} \, dx = \dfrac{1}{2} e^{2x} + C} \end{align*}

Why This Works:

When integrating functions like e2x e^{2x} , we often encounter an exponent involving a coefficient (here, the coefficient is 2). Using substitution helps simplify the problem by transforming it into a basic exponential integral.

Final Answer:

To summarize, the integral of e2x e^{2x} is:

e2xdx=12e2x+C\begin{align*} \boxed{\int e^{2x} \, dx = \dfrac{1}{2} e^{2x} + C} \end{align*}


NEED QUICK

CALC HELP?

Download the I Aced Calculus App today!

ALL Calc Topics, 1000+ of PRACTICE questions


Related Problems