You are here:

Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.

Derivative of sin x, limit proof

The derivative of $\sin x$ is $\boxed{\cos x}$. We will use the limit definition of derivative to prove this.
\[ \begin{align*} \frac{d}{dx} f(x) &= \lim_{h \to 0} \dfrac{f(x + h) – f(x)}h \end{align*} \]

We will also use the trigonometric identity $\sin(a + b) = \cos a \sin b + \sin a \cos b$ (line 2) and $\displaystyle \lim_{x \to 0} \dfrac{\sin x}{x} = 1$ (line 4) to derive this:

\[ \begin{align*} \frac{d}{dx} \sin x &= \lim_{h \to 0} \dfrac{\sin(x + h) – \sin x}h\\ &= \lim_{h \to 0} \dfrac{\cos x \sin h + \sin x \cos h – \sin x}h\\ &= \lim_{h \to 0} \dfrac{\cos x \sin h}{h} + \dfrac{\sin x \cos h – \sin x}{h}\\ &= \cos x \cdot \lim_{h \to 0} \dfrac{\sin h}{h} + \lim_{h \to 0} \dfrac{\sin x(\cos h – 1)}{h}\\ &= \cos x + \lim_{h \to 0} \sin x \cdot \lim_{h \to 0} \dfrac{\cos h – 1}{h}\\ \end{align*} \]
Evaluating $\displaystyle \lim_{h \to 0} \dfrac{\cos h – 1}{h}$ by using $\sin^2 x + \cos^2 x = 1$:
\[ \begin{align*} \lim_{h \to 0} \dfrac{\cos h – 1}{h} &= \lim_{h \to 0} \dfrac{\cos h – 1}{h} \cdot \dfrac{\cos h + 1}{\cos h + 1}\\ &= \lim_{h \to 0} \dfrac{\cos^2 h – 1}{h(\cos h + 1)}\\ &= \lim_{h \to 0} \dfrac{-\sin^2 h}{h(\cos h + 1)}\\ &= (-1)\lim_{h \to 0} \left(\dfrac{\sin h}{h}\right)(\sin h)\left(\dfrac1{\cos h + 1}\right)\\ &= (-1)(1)(0)\left(\dfrac12\right) = 0 \end{align*} \]
We get the end result that $\boxed{\frac{d}{dx} \sin x = \cos x + (1)(0) = \cos x}$.

NEED QUICK
CALC HELP?
Download the I Aced Calculus App today!
ALL Calc Topics, 1000+ of PRACTICE questions