You are here:

Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.

Master Exponent Laws with Ease

Introduction

Exponent rules are the building blocks of simplifying complex calculations. Master them, and math becomes much simpler! These rules help simplify expressions, solve equations, and tackle real-world problems. Let’s break down these laws with clear examples, visuals, and practice problems to ensure they stick.

Product Rule

Add exponents when multiplying

Example:

\[\begin{align*} 2^3 \cdot 2^7 &= \underbrace{2 \cdot 2 \cdot 2}_{2^3} \cdot \underbrace{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}_{2^7} \\ &= 2^{10} = 1024. \end{align*}\]

Quotient Rule

Subtract exponents when dividing

Example:

\[\begin{align*} \frac{3^5}{3^2} = \frac{3 \cdot 3 \cdot 3 \cdot 3 \cdot 3}{3 \cdot 3} = 3^{5-2} = 3^3 = 27. \end{align*}\]

Negative Exponents

Take a reciprocal for negative exponents

Example:

\[\begin{align*} 2^{-3} = \frac{1}{2^3} = \frac{1}{2 \cdot 2 \cdot 2} = \frac{1}{8}. \end{align*}\]

Power Rule

Multiply exponents when in parenthesis

Example:

\[\begin{align*} (3^2)^4 = (3 \cdot 3)^4 = 3^{2 \cdot 4} = 3^8. \end{align*}\]

Fractional Exponents

Fractional exponents are roots

Explanation: Fractional exponents represent roots. The denominator is the root, and the numerator is the power. The order does not matter: you can take the root first or apply the power first.

Special Case: When \( n = 2 \), this is the square root:
\[ x^{1/2} = \sqrt{x}. \]

Example:

\[\begin{align*} 27^{2/3} = \sqrt[3]{27^2} = \sqrt[3]{729} = 9. \end{align*}\]

Common Mistakes

  • Adding exponents instead of multiplying: Remember that \( x^m \cdot x^n = x^{m+n} \), but \( (x^m)^n = x^{m \cdot n} \).
  • Confusing negative exponents: \( x^{-1} \neq -x \). Negative exponents mean reciprocals.
  • Misinterpreting fractional exponents: \( x^{1/2} \neq x \div 2 \). Fractional exponents represent roots, not division.

Summary Table

Exponent Laws

Practice Problems

Simplify the following expressions:

  1. \( 3^4 \cdot 3^2 \)
  2. \( \dfrac{5^7}{5^3} \)
  3. \( (2^3)^4 \)
  4. \( 16^{-1/2} \)
  5. \( 9^{3/2} \)
  6. \( \dfrac{2^6}{2^3} \)
  7. \( (5^2)^3 \)
  8. \( 27^{1/3} \)
  9. \( \dfrac{8^{-2}}{4^{-1}} \)
  10. \( (x^2 y)^3 \cdot x^{-6} y^{-1} \)
  11. \( \dfrac{(2^4)^3}{4^{-1}} \)
  12. \( \sqrt[3]{27^5} \)
  13. \( \dfrac{(x y^2)^3}{x^{-3} y} \)
  14. \( \dfrac{5^{-4}}{2^{-2}} \cdot \sqrt[3]{8^2} \)
  15. \( \sqrt[4]{16^3} \cdot \dfrac{9^{1/2}}{3} \)

Solutions

  1. \( 3^4 \cdot 3^2 = 3^{4+2} = 3^6 = 729. \)
  2. \( \dfrac{5^7}{5^3} = 5^{7-3} = 5^4 = 625. \)
  3. \( (2^3)^4 = 2^{3 \cdot 4} = 2^{12} = 4096. \)
  4. \( 16^{-1/2} = \dfrac{1}{16^{1/2}} = \dfrac{1}{\sqrt{16}} = \dfrac{1}{4}. \)
  5. \( 9^{3/2} = (9^{1/2})^3 = (\sqrt{9})^3 = 3^3 = 27. \)
  6. \( \dfrac{2^6}{2^3} = 2^{6-3} = 2^3 = 8. \)
  7. \( (5^2)^3 = 5^{2 \cdot 3} = 5^6 = 15625. \)
  8. \( 27^{1/3} = \sqrt[3]{27} = 3. \)
  9. \( \dfrac{8^{-2}}{4^{-1}} = 8^{-2} \cdot 4^1 = \dfrac{1}{8^2} \cdot 4 = \dfrac{1}{64} \cdot 4 = \dfrac{4}{64} = \dfrac{1}{16}. \)
  10. \( (x^2 y)^3 \cdot x^{-6} y^{-1} = x^{2 \cdot 3} y^3 \cdot x^{-6} y^{-1} = x^6 x^{-6} y^{3-1} = y^2. \)
  11. \( \dfrac{(2^4)^3}{4^{-1}} = \dfrac{2^{4 \cdot 3}}{4^{-1}} = \dfrac{2^{12}}{2^{-2}} = 2^{12+2} = 2^{14}. \)
  12. \( \sqrt[3]{27^5} = (\sqrt[3]{27})^5 = 3^5 = 243. \)
  13. \( \dfrac{(x y^2)^3}{x^{-3} y} = \dfrac{x^3 y^{6}}{x^{-3} y^1} = x^{3+3} y^{6-1} = x^6 y^5. \)
  14. \( \dfrac{5^{-4}}{2^{-2}} \cdot \sqrt[3]{8^2} = \dfrac{1}{5^4} \cdot 2^2 \cdot \sqrt[3]{64} = \dfrac{1}{625} \cdot 4 \cdot 4 = \dfrac{16}{625}. \)
  15. \( \sqrt[4]{16^3} \cdot \dfrac{9^{1/2}}{3} = (\sqrt[4]{16})^3 \cdot \dfrac{\sqrt{9}}{3} = 2^3 \cdot \dfrac{3}{3} = 8. \)

Conclusion

Mastering exponent laws is essential for simplifying expressions and solving equations quickly. With practice, these rules become second nature, unlocking efficiency and accuracy in your math journey. Start practicing today and see how these powerful tools transform your problem-solving skills!

NEED QUICK
CALC HELP?
Download the I Aced Calculus App today!
ALL Calc Topics, 1000+ of PRACTICE questions