You are here:

Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.

Integration of x 1 x 2

Results Summary

If you’re searching for “integration of x 1 x 2,” here are some possible answers:

$$\boxed{\int \frac{x + 1}{x + 2} \, dx = \ln |x+2| – \frac{1}{x+2} + C}$$

$$\boxed{\int \frac{x – 1}{x – 2} \, dx = \ln |x – 2| + \frac{1}{x – 2} + C}$$

$$\boxed{\int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \ln |1 + x^2| + C}$$

$$\boxed{\int x (1 + x)^2 \, dx = \frac{x^2}{2} + \frac{2x^3}{3} + \frac{x^4}{4} + C}$$

Introduction

The “integration of x 1 x 2” could have multiple meanings. Here are four possible options for this expression, with detailed solutions for each.

Option 1: \( \displaystyle \int \frac{x + 1}{x + 2} \, dx \)

Rewrite the integral as:

\[\begin{align*} = \int 1 – \frac{1}{x + 2} \, dx \end{align*}\]

Now integrate each term:

\[\begin{align*} = x – \ln |x + 2| + C \end{align*}\]

Thus, the result is:

\[\begin{align*} \int \frac{x + 1}{x + 2} \, dx = x – \ln |x + 2| + C \end{align*}\]

Option 2: \( \displaystyle \int \frac{x – 1}{x – 2} \, dx \)

Rewrite the integral as:

\[\begin{align*} = \int 1 + \frac{1}{x – 2} \, dx \end{align*}\]

Now integrate each term:

\[\begin{align*} = x + \ln |x – 2| + C \end{align*}\]

Thus, the result is:

\[\begin{align*} \int \frac{x – 1}{x – 2} \, dx = x + \ln |x – 2| + C \end{align*}\]

Option 3: \( \displaystyle \int \frac{x}{1 + x^2} \, dx \)

Using the $u$-substitution \( u = 1 + x^2 \), so \( du = 2x \, dx \) or \( \frac{du}{2} = x \, dx \):

\[\begin{align*} = \int \frac{1}{2} \cdot \frac{1}{u} \, du = \frac{1}{2} \ln |u| + C \end{align*}\]

Substitute back \( u = 1 + x^2 \):

\[\begin{align*} = \frac{1}{2} \ln |1 + x^2| + C \end{align*}\]

Thus, the result is:

\[\begin{align*} \int \frac{x}{1 + x^2} \, dx = \frac{1}{2} \ln |1 + x^2| + C \end{align*}\]

Option 4: \( \displaystyle\int x (1 + x)^2 \, dx \)

Expanding \( (1 + x)^2 = 1 + 2x + x^2 \):

\[\begin{align*} = \int x (1 + 2x + x^2) \, dx = \int (x + 2x^2 + x^3) \, dx \end{align*}\]

Now integrate each term:

\[\begin{align*} = \frac{x^2}{2} + \frac{2x^3}{3} + \frac{x^4}{4} + C \end{align*}\]

Thus, the result is:

\[\begin{align*} \int x (1 + x)^2 \, dx = \frac{x^2}{2} + \frac{2x^3}{3} + \frac{x^4}{4} + C \end{align*}\]

NEED QUICK
CALC HELP?
Download the I Aced Calculus App today!
ALL Calc Topics, 1000+ of PRACTICE questions