Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.

Integral of 2 x

Results Summary

If you’re searching for “integral of 2 x,” here are some possible solutions:

$$\boxed{\int 2x \, dx = x^2 + C}$$

$$\boxed{\int \frac{2}{x} \, dx = 2 \ln |x| + C}$$

$$\boxed{\int (2 + x) \, dx = 2x + \frac{x^2}{2} + C}$$

Below are three potential integrals based on common mathematical usage and the step-by-step solutions for each.

Option 1: \( \displaystyle \int 2x \, dx \)

Using the Power Rule, \( \int x^n \, dx = \frac{x^{n+1}}{n+1} \), we get:

\[\begin{align*} = x^2 + C \end{align*}\]

Thus, the result is:

\[\begin{align*} \int 2x \, dx = x^2 + C \end{align*}\]

Option 2: \( \displaystyle \int \frac{2}{x} \, dx \)

This is a standard integral, as \( \displaystyle \int \frac{1}{x} \, dx = \ln |x| \):

\[\begin{align*} = 2 \ln |x| + C \end{align*}\]

Thus, the result is:

\[\begin{align*} \int \frac{2}{x} \, dx = 2 \ln |x| + C \end{align*}\]

Option 3: \( \displaystyle \int (2 + x) \, dx \)

This integral separates into two simpler integrals:

\[\begin{align*} = \int 2 \, dx + \int x \, dx \end{align*}\]

Solving each term:

\[\begin{align*} = 2x + \frac{x^2}{2} + C \end{align*}\]

Thus, the result is:

\[\begin{align*} \int (2 + x) \, dx = 2x + \frac{x^2}{2} + C \end{align*}\]


NEED QUICK

CALC HELP?

Download the I Aced Calculus App today!

ALL Calc Topics, 1000+ of PRACTICE questions


Related Problems

NEED QUICK

  • ALL Calc Topics
    AB and BC
  • 1000+
    PRACTICE questions
  • 400+ FLASHCARDS
  • VIDEO tutorials

CALC HELP?

Download the I Aced Calculus App today!