You are here:

Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.

Integral of 1 1 x 2

Results Summary

If you’re searching for “integral of 1 1 x 2,” here are some possible interpretations and their solutions:

$$\boxed{\int \frac{1}{1 + x^2} \, dx = \arctan(x) + C}$$

$$\boxed{\int \frac{1}{1 – x^2} \, dx = \frac{1}{2} \ln \left| \frac{1 + x}{1 – x} \right| + C}$$

Let’s go through each interpretation and solve it step-by-step.

 

Option 1: \( \displaystyle \int \frac{1}{1 + x^2} \, dx \)

This is a standard integral that results in the arctangent function:

\[\begin{align*} = \arctan(x) + C \end{align*}\]

Thus, the result is:

\[\begin{align*} \int \frac{1}{1 + x^2} \, dx = \arctan(x) + C \end{align*}\]

 

Option 2: \( \displaystyle \int \frac{1}{1 – x^2} \, dx \)

This integral can be evaluated by recognizing it as a partial fraction decomposition. Rewrite \( \dfrac{1}{1 – x^2} \) as:

\[\begin{align*} \frac{1}{1 – x^2} = \frac{1}{2} \left( \frac{1}{1 + x} + \frac{1}{1 – x} \right) \end{align*}\]

Then integrate each term:

\[\begin{align*} = \frac{1}{2} \ln |1 + x| – \frac{1}{2} \ln |1 – x| + C \end{align*}\]

Combining the logarithmic terms, we get:

\[\begin{align*} = \frac{1}{2} \ln \left| \frac{1 + x}{1 – x} \right| + C \end{align*}\]

Thus, the result is:

\[\begin{align*} \int \frac{1}{1 – x^2} \, dx = \frac{1}{2} \ln \left| \frac{1 + x}{1 – x} \right| + C \end{align*}\]

CALC HELP?
NEED QUICK
Download the I Aced Calculus App today!
ALL Calc Topics, 1000+ of PRACTICE questions