Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.
28 Oct 2024
Madhavendra Thakur
October 28, 2024
Exponents allow us to represent repeated multiplication in a concise way. Mastering the basic exponent rules helps simplify complex algebraic expressions, and is a key stepping stone to more complex areas of math. This guide presents the rules with step-by-step examples for clarity.
When multiplying two expressions with the same base, add their exponents:
\[\begin{align*} a^m \cdot a^n = a^{m+n} \end{align*}\]
Example: Simplify \( x^3 \cdot x^4 \).
\[\begin{align*} x^3 \cdot x^4 &= (x \cdot x \cdot x) \cdot (x \cdot x \cdot x \cdot x) \\ &= x^7 \end{align*}\]
When dividing two expressions with the same base, subtract the exponent in the denominator from the exponent in the numerator:
\[\begin{align*} \frac{a^m}{a^n} = a^{m-n} \quad \text{(where } a \neq 0\text{)} \end{align*}\]
Example: Simplify \( \dfrac{y^6}{y^2} \).
\[\begin{align*} \frac{y^6}{y^2} &= \frac{y \cdot y \cdot y \cdot y \cdot y \cdot y}{y \cdot y} \\ &= y^{6-2} = y^4 \quad \text{(cancel two } y\text{‘s from the top and bottom)} \end{align*}\]
When raising a power to another power, multiply the exponents:
\[\begin{align*} (a^m)^n = a^{m \cdot n} \end{align*}\]
Example: Simplify \( (x^2)^3 \).
\[\begin{align*} (x^2)^3 &= x^2 \cdot x^2 \cdot x^2 \\ &= x^{2+2+2} = x^6 \end{align*}\]
When raising a product to a power, apply the exponent to each part of the product:
\[\begin{align*} (ab)^n = a^n \cdot b^n \end{align*}\]
Example: Simplify \( (2x)^3 \).
\[\begin{align*} (2x)^3 &= (2 \cdot x) \cdot (2 \cdot x) \cdot (2 \cdot x) \\ &= 2^3 \cdot x^3 = 8x^3 \end{align*}\]
When raising a quotient to a power, apply the exponent to both the numerator and the denominator:
\[\begin{align*} \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \quad \text{(where } b \neq 0\text{)} \end{align*}\]
Example: Simplify \( \left(\frac{x}{3}\right)^2 \).
\[\begin{align*} \left(\frac{x}{3}\right)^2 &= \frac{x \cdot x}{3 \cdot 3} \\ &= \frac{x^2}{9} \end{align*}\]
Any non-zero base raised to the power of zero equals 1:
\[\begin{align*} a^0 = 1 \quad \text{(where } a \neq 0\text{)} \end{align*}\]
This can be derived using previous exponent rules:
\[\begin{align*} a^0 = a^{1 – 1} = \frac{a^1}{a^1} = \frac{a}{a} = 1. \end{align*}\]
Example: Simplify \( 5^0 \).
\[\begin{align*} 5^0 = 1. \end{align*}\]
A negative exponent means the reciprocal of the base raised to the positive exponent:
\[\begin{align*} a^{-n} = \frac{1}{a^n} \quad \text{(where } a \neq 0\text{)} \end{align*}\]
This can be derived using previous exponent rules. Recall that anything raised to the power of zero equals $1$, so:
\[\begin{align*} a^{-n} = a^{0 – n} = \frac{a^0}{a^n} = \frac{1}{a^n}. \end{align*}\]
Example: Simplify \( 3^{-2} \).
\[\begin{align*} 3^{-2} = \frac{1}{3^2} = \frac{1}{9}. \end{align*}\]
Example 1: Simplify \( \frac{(2x^3)^2 \cdot x^{-1}}{x^4} \).
\[\begin{align*} &\frac{(2x^3)^2 \cdot x^{-1}}{x^4} = \frac{2^2 \cdot x^{3 \cdot 2} \cdot x^{-1}}{x^4} \\ &= \frac{4 \cdot x^6 \cdot x^{-1}}{x^4} = \frac{4 \cdot x^{6 + (-1)}}{x^4} \\ &= \frac{4 \cdot x^5}{x^4} = 4x^{5-4} = 4x \end{align*}\]
Example 2: Simplify \( \frac{5x^{-2}}{10x^{-5}} \).
\[\begin{align*} &\frac{5x^{-2}}{10x^{-5}} = \frac{5}{10} \cdot \frac{x^{-2}}{x^{-5}} \\ &= \frac{1}{2} \cdot x^{(-2) – (-5)} \\ &= \frac{1}{2} \cdot x^{3} = \frac{x^3}{2} \end{align*}\]
Understanding and applying these exponent rules is crucial to developing a solid algebraic foundation. For more practice problems in math topics ranging from pre-algebra to differential equations, check out the I Aced Calculus app.