You are here:

Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.

Derivative of $\sec(2x)$

\[\begin{align*} \boxed{\dfrac{d}{dx} \sec(2x) = 2 \cdot \sec \left(2x\right)\tan \left(2x\right)} \end{align*}\]

Solving for the Derivative

Applying the chain rule:

\[\begin{align*} \dfrac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)) \end{align*}\]

We may set our $g(x) = 2x$ and our $f(x) = \sec x$. Doing this, we get that

\[\begin{align*} \dfrac{d}{dx} \sec(2x) &= \sec \left(2x\right)\tan \left(2x\right)\frac{d}{dx}\left(2x\right)\\ &= \boxed{2 \cdot \sec \left(2x\right)\tan \left(2x\right)} \end{align*}\]

This result is immediate from the common derivative of $\sec x$ being $\sec x \tan x$. Assuming we do not know this derivative, the easiest way to show the derivative would be using the quotient rule:

\[\begin{align*} \dfrac{d}{dx} \dfrac{f(x)}{g(x)} = \dfrac{g(x)f'(x) – f(x)g'(x)}{g^2(x)} \end{align*}\]

Applying this to the derivative of $\sec x$, notice that $\sec x = \dfrac{1}{\cos x}$, so we may say that:

\[\begin{align*} \dfrac{d}{dx} \sec x = \dfrac{d}{dx} \dfrac{1}{\cos x} &= \dfrac{\cos x \cdot 0 – 1 \cdot -\sin x}{\cos^2 x}\\ &= \dfrac{\sin x}{\cos^2 x}\\ &= \dfrac{1}{\cos x} \cdot \dfrac{\sin x}{\cos x}\\ &= \sec x \tan x \end{align*}\]

Note on $\sec x$

It is advised you remember common trigonometric derivatives such as $\sec x$ for an easier time when deriving other problems!

CALC HELP?
NEED QUICK
Download the I Aced Calculus App today!
ALL Calc Topics, 1000+ of PRACTICE questions