You are here:

Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.

Derivative of $\ln x$ times $\ln x$

\[\begin{align*} \boxed{\dfrac{d}{dx} \ln x \cdot \ln x = \dfrac{2\ln x}{x}} \end{align*}\]

Solving for the Derivative

To find the derivative, we should review the product rule:

\[\begin{align*} \frac{d}{dx} f(x) \cdot g(x) = f(x) \cdot \frac{d}{dx} g(x) + g(x) \cdot \frac{d}{dx} f(x) \end{align*}\]

Proceeding with our two functions, $f(x) = g(x) = \ln x$, we get that $f'(x) = g'(x) = \dfrac1x$. Using the product rule, we obtain:

\[\begin{align*} \dfrac{d}{dx} \ln x \cdot \ln x &= \ln x \cdot \dfrac1x + \ln x \cdot \dfrac1x\\ &=\dfrac{\ln x}{x} + \dfrac{\ln x}{x}\\ &=\boxed{\dfrac{2\ln x}{x}} \end{align*}\]

Alternatively, if you wanted to use the chain rule instead:

\[\begin{align*} \dfrac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)) \end{align*}\]

We could set our derivative $\dfrac{d}{dx} \ln x \cdot \ln x = \ln^2 x$. Doing this, we get that $f(x) = x^2$ and $g(x) = \ln x$. With this in mind, we may use chain rule to obtain:

\[\begin{align*} \dfrac{d}{dx} \ln x \cdot \ln x &= \ln^2 x\\ &=2\ln x \cdot \dfrac{1}{x}\\ &=\boxed{\dfrac{2\ln x}{x}} \end{align*}\]

CALC HELP?
NEED QUICK
Download the I Aced Calculus App today!
ALL Calc Topics, 1000+ of PRACTICE questions