Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.
22 Oct 2024
The derivative of \( \dfrac{x+1}{x} \) is \( \boxed{-\dfrac{1}{x^2}} \). While we can use the \textbf{quotient rule}, splitting the expression into two terms provides a simpler approach.
Rewrite \( \dfrac{x+1}{x} \) as:
\[\begin{align*}\frac{x+1}{x} = \frac{x}{x} + \frac{1}{x} = 1 + \frac{1}{x}.\end{align*}\]
Now differentiate term-by-term:
\[\begin{align*}\frac{d}{dx} \left( 1 + \frac{1}{x} \right) = 0 – \frac{1}{x^2} = -\frac{1}{x^2}.\end{align*}\]
Using the quotient rule:
\[\begin{align*}\frac{d}{dx} \left( \frac{x+1}{x} \right) = \frac{x \cdot \frac{d}{dx}(x+1) – (x+1) \cdot \frac{d}{dx}(x)}{x^2}.\end{align*}\]
Simplify step-by-step:
\[\begin{align*}= \frac{x \cdot 1 – (x+1) \cdot 1}{x^2} = \frac{x – (x+1)}{x^2} = \frac{-1}{x^2}.\end{align*}\]
By simplifying first, Method 1 avoids the complexity of applying the quotient rule, making it faster and less prone to errors. Use the quotient rule only when simplification isn’t possible.
Find the derivative of \( \dfrac{x^2 + 3x}{x^2} \).
Simplify First:
\[\begin{align*}\frac{x^2 + 3x}{x^2} = 1 + \frac{3}{x}.\end{align*}\]
Differentiate:
\[\begin{align*}\frac{d}{dx} \left( 1 + \frac{3}{x} \right) = 0 – \frac{3}{x^2} = -\frac{3}{x^2}.\end{align*}\]
Using Quotient Rule:
\[\begin{align*}\frac{d}{dx} \left( \frac{x^2 + 3x}{x^2} \right) = \frac{x^2 \cdot (2x+3) – (x^2 + 3x) \cdot 2x}{(x^2)^2}.\end{align*}\]
Simplify:
\[\begin{align*}= -\frac{3}{x^2}.\end{align*}\]
Simplifying first saves time and effort. Use this approach whenever possible.