You are here:

Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.

Derivative Formula Sheet

Basic Derivative Formulas

Constant Rule: $\dfrac{d}{dx}C=0$

Constant Multiple Rule: $\dfrac{d}{dx}\Big(Cf(x)\Big)=C\dfrac{d}{dx}f(x)$

Sum and Difference Rule: $\dfrac{d}{dx}\Big(f(x)\pm g(x)\Big)=\dfrac{d}{dx}f(x)\pm\dfrac{d}{dx}g(x)$

Power Rule: $\dfrac{d}{dx}x^n=nx^{n-1}$

Product Rule:

$$\dfrac{d}{dx}\Big(f(x)g(x)\Big)=f(x)g'(x)+g(x)f'(x)$$

Quotient Rule:

$$\dfrac{d}{dx}\left(\dfrac{f(x)}{g(x)}\right)=\dfrac{g(x)f'(x)-f(x)g'(x)}{g(x)^2}$$

Chain Rule:

$$\dfrac{d}{dx}\Big(f(g(x))\Big)=f'(g(x))g'(x)$$

Where $f(x)$ is the outside function and $g(x)$ is the inside function.

Exponential and Logarithmic Derivatives

\[ \begin{array}{lll} \dfrac{d}{dx}e^x=e^x &&  \dfrac{d}{dx}a^x=a^x\ln{a} \\[10pt] \dfrac{d}{dx}\ln{x}=\dfrac{1}{x} && \dfrac{d}{dx}\log_a x=\dfrac{1}{x\ln{a}} \end{array} \]

Trigonometric Derivatives

\[ \begin{align*} &\dfrac d{dx} \sin x = \cos x \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \dfrac d{dx} \sec x = \sec x \tan x \\ &\dfrac d{dx} \cos x = -\sin x \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \dfrac d{dx} \csc x = -\csc x \tan x \\ &\dfrac d{dx} \tan x = \sec^2 x \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \dfrac d{dx} \cot x = -\csc x^2 \end{align*} \]

Inverse Trigonometric Derivatives

\[ \begin{align*} &\dfrac d{dx} \sin^{-1} x = \dfrac{1}{\sqrt{1-x^2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \dfrac d{dx} \sec^{-1} x = \dfrac{1}{|x|\sqrt{x^2-1}} \\ &\dfrac d{dx} \cos^{-1} x = -\dfrac{1}{\sqrt{1-x^2}} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \dfrac d{dx} \csc^{-1} x = -\dfrac{1}{|x|\sqrt{x^2-1}} \\ &\dfrac d{dx} \tan^{-1} x = \dfrac{1}{x^2+1} \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \dfrac d{dx} \cot^{-1} x = -\dfrac{1}{x^2+1} \end{align*} \]

NEED QUICK
CALC HELP?
Download the I Aced Calculus App today!
ALL Calc Topics, 1000+ of PRACTICE questions