Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.

Derivative of $\ln x$ times $\ln x$

\[\begin{align*} \boxed{\dfrac{d}{dx} \ln x \cdot \ln x = \dfrac{2\ln x}{x}} \end{align*}\]

Solving for the Derivative

To find the derivative, we will use the Product Rule:

\[\begin{align*} \frac{d}{dx} f(x) \cdot g(x) = f(x) \cdot \frac{d}{dx} g(x) + g(x) \cdot \frac{d}{dx} f(x) \end{align*}\]

In our case both functions are the same, $f(x) = g(x) = \ln x$, we get that $f'(x) = g'(x) = \dfrac1x$. Using the product rule, we obtain:

\[\begin{align*} \dfrac{d}{dx} \ln x \cdot \ln x &= \ln x \cdot \dfrac1x + \ln x \cdot \dfrac1x\\ &=\dfrac{\ln x}{x} + \dfrac{\ln x}{x}\\ &=\boxed{\dfrac{2\ln x}{x}} \end{align*}\]

Alternatively, we can use the Chain Rule:

\[\begin{align*} \dfrac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)) \end{align*}\]

We can rewrite our derivative $\dfrac{d}{dx} \ln x \cdot \ln x = \ln^2 x$. Thus, we get that $f(x) = x^2$ and $g(x) = \ln x$. Now using the chain rule we obtain:

\[\begin{align*} \dfrac{d}{dx} \ln x \cdot \ln x &= \ln^2 x\\ &=2\ln x \cdot \dfrac{1}{x}\\ &=\boxed{\dfrac{2\ln x}{x}} \end{align*}\]


NEED QUICK

CALC HELP?

Download the I Aced Calculus App today!

ALL Calc Topics, 1000+ of PRACTICE questions


Related Problems

NEED QUICK

  • ALL Calc Topics
    AB and BC
  • 1000+
    PRACTICE questions
  • 400+ FLASHCARDS
  • VIDEO tutorials

CALC HELP?

Download the I Aced Calculus App today!