Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.
18 Nov 2024
\[\begin{align*} \boxed{\dfrac{d}{dx} \ln x \cdot \ln x = \dfrac{2\ln x}{x}} \end{align*}\]
To find the derivative, we will use the Product Rule:
\[\begin{align*} \frac{d}{dx} f(x) \cdot g(x) = f(x) \cdot \frac{d}{dx} g(x) + g(x) \cdot \frac{d}{dx} f(x) \end{align*}\]
In our case both functions are the same, $f(x) = g(x) = \ln x$, we get that $f'(x) = g'(x) = \dfrac1x$. Using the product rule, we obtain:
\[\begin{align*} \dfrac{d}{dx} \ln x \cdot \ln x &= \ln x \cdot \dfrac1x + \ln x \cdot \dfrac1x\\ &=\dfrac{\ln x}{x} + \dfrac{\ln x}{x}\\ &=\boxed{\dfrac{2\ln x}{x}} \end{align*}\]
Alternatively, we can use the Chain Rule:
\[\begin{align*} \dfrac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)) \end{align*}\]
We can rewrite our derivative $\dfrac{d}{dx} \ln x \cdot \ln x = \ln^2 x$. Thus, we get that $f(x) = x^2$ and $g(x) = \ln x$. Now using the chain rule we obtain:
\[\begin{align*} \dfrac{d}{dx} \ln x \cdot \ln x &= \ln^2 x\\ &=2\ln x \cdot \dfrac{1}{x}\\ &=\boxed{\dfrac{2\ln x}{x}} \end{align*}\]