Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.
29 Oct 2024
If you’re searching for “integration of x 2 2,” here are some possible interpretations and their solutions:
$$\boxed{\int \frac{x – 2}{2} \, dx = \frac{x^2}{4} – x + C}$$
$$\boxed{\int (x – 2)^2 \, dx = \frac{x^3}{3} – 2x^2 + 4x + C}$$
$$\boxed{\int \frac{x^2}{2} \, dx = \frac{x^3}{6} + C}$$
$$\boxed{\int \frac{x}{2} + 2 \, dx = \frac{x^2}{4} + 2x + C}$$
The “integration of x 2 2” could have multiple meanings. Here are four possible options with detailed solutions for each.
Let’s separate the terms:
\[\begin{align*} = \frac{1}{2} \int x \, dx – \frac{1}{2} \int 2 \, dx \end{align*}\]
Now integrate each term:
\[\begin{align*} = \frac{1}{2} \cdot \frac{x^2}{2} – \frac{1}{2} \cdot 2x + C \end{align*}\]
Simplify:
\[\begin{align*} = \frac{x^2}{4} – x + C \end{align*}\]
Thus, the result is:
\[\begin{align*} \int \frac{x – 2}{2} \, dx = \frac{x^2}{4} – x + C \end{align*}\]
Let’s expand \( (x – 2)^2 \):
\[\begin{align*} = \int (x^2 – 4x + 4) \, dx \end{align*}\]
Now integrate each term:
\[\begin{align*} = \frac{x^3}{3} – 2x^2 + 4x + C \end{align*}\]
Thus, the result is:
\[\begin{align*} \int (x – 2)^2 \, dx = \frac{x^3}{3} – 2x^2 + 4x + C \end{align*}\]
Here, we factor out the constant \( \frac{1}{2} \):
\[\begin{align*} = \frac{1}{2} \int x^2 \, dx \end{align*}\]
Using the power rule:
\[\begin{align*} = \frac{1}{2} \cdot \frac{x^3}{3} + C = \frac{x^3}{6} + C \end{align*}\]
Thus, the result is:
\[\begin{align*} \int \frac{x^2}{2} \, dx = \frac{x^3}{6} + C \end{align*}\]
We first separate the terms:
\[\begin{align*} = \int \frac{x}{2} \, dx + \int 2 \, dx \end{align*}\]
Now integrate each term:
\[\begin{align*} = \frac{x^2}{4} + 2x + C \end{align*}\]
Thus, the result is:
\[\begin{align*} \int \frac{x}{2} + 2 \, dx = \frac{x^2}{4} + 2x + C \end{align*}\]