Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.
29 Oct 2024
If you’re searching for “integrate 2 1 x,” here are some possible solutions:
$$\boxed{\int \frac{2}{1 + x} \, dx = 2 \ln |1 + x| + C}$$
$$\boxed{\int \frac{2}{1 – x} \, dx = -2 \ln |1 – x| + C}$$
$$\boxed{\int \left( 2 + \frac{1}{x} \right) \, dx = 2x + \ln |x| + C}$$
$$\boxed{\int 2(1 + x) \, dx = 2x + x^2 + C}$$
Let’s solve each option step-by-step to make sure we cover all possibilities.
Using the rule \( \int \frac{1}{u} \, du = \ln |u| \), where \( u = 1 + x \) and \( du = dx \), we get:
\[\begin{align*} = 2 \ln |1 + x| + C \end{align*}\]
Thus, the result is:
\[\begin{align*} \int \frac{2}{1 + x} \, dx = 2 \ln |1 + x| + C \end{align*}\]
We are going to use $u$-substitution. Let \( u = 1 – x \), so \( du = -dx \). Substituting and integrating:
\[\begin{align*} = -2 \ln |1 – x| + C \end{align*}\]
Thus, the result is:
\[\begin{align*} \int \frac{2}{1 – x} \, dx = -2 \ln |1 – x| + C \end{align*}\]
This integral separates into two integrals:
\[\begin{align*} = \int 2 \, dx + \int \frac{1}{x} \, dx \end{align*}\]
Solving each term:
\[\begin{align*} = 2x + \ln |x| + C \end{align*}\]
Thus, the result is:
\[\begin{align*} \int \left( 2 + \frac{1}{x} \right) \, dx = 2x + \ln |x| + C \end{align*}\]
Let’s split the integral into two simpler integrals:
\[\begin{align*} = \int 2 \, dx + \int 2x \, dx \end{align*}\]
Solving each term:
\[\begin{align*} = 2x + x^2 + C \end{align*}\]
Thus, the result is:
\[\begin{align*} \int 2(1 + x) \, dx = 2x + x^2 + C \end{align*}\]