Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.
29 Oct 2024
If you’re searching for “integral of 2 x,” here are some possible solutions:
$$\boxed{\int 2x \, dx = x^2 + C}$$
$$\boxed{\int \frac{2}{x} \, dx = 2 \ln |x| + C}$$
$$\boxed{\int (2 + x) \, dx = 2x + \frac{x^2}{2} + C}$$
Below are three potential integrals based on common mathematical usage and the step-by-step solutions for each.
Using the Power Rule, \( \int x^n \, dx = \frac{x^{n+1}}{n+1} \), we get:
\[\begin{align*} = x^2 + C \end{align*}\]
Thus, the result is:
\[\begin{align*} \int 2x \, dx = x^2 + C \end{align*}\]
This is a standard integral, as \( \displaystyle \int \frac{1}{x} \, dx = \ln |x| \):
\[\begin{align*} = 2 \ln |x| + C \end{align*}\]
Thus, the result is:
\[\begin{align*} \int \frac{2}{x} \, dx = 2 \ln |x| + C \end{align*}\]
This integral separates into two simpler integrals:
\[\begin{align*} = \int 2 \, dx + \int x \, dx \end{align*}\]
Solving each term:
\[\begin{align*} = 2x + \frac{x^2}{2} + C \end{align*}\]
Thus, the result is:
\[\begin{align*} \int (2 + x) \, dx = 2x + \frac{x^2}{2} + C \end{align*}\]