Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.
25 Oct 2024
$\log_b M + \log_b N = \log_b (M \times N)$
Let’s learn how to add logarithms. Don’t worry – it’s simple and straightforward.
A logarithm answers the question: To what exponent must we raise the base to get a certain number?
For example:
$\log_2 8 = 3$ because $2^3 = 8$.
When adding two logarithms with the same base, you can combine them into one logarithm by multiplying the numbers inside.
\[\begin{align*} \log_b M + \log_b N = \log_b (M \times N) \end{align*}\]
Example: Simplify $\log_2 4 + \log_2 8$
Step 1: Multiply the numbers inside the logs:
\[\begin{align*} 4 \times 8 = 32 \end{align*}\]
Step 2: Combine into one logarithm:
\[\begin{align*} \log_2 4 + \log_2 8 = \log_2 32 \end{align*}\]
Step 3: Simplify if possible:
Since $2^5 = 32$, we have:
\[\begin{align*} \log_2 32 = 5 \end{align*}\]
– The bases must be the same.
– Only multiply the numbers inside the logs.
– You can simplify further if possible.
Example: Simplify $\log_{10} 5 + \log_{10} 2$
Solution:
1. Multiply the numbers inside:
\[\begin{align*} 5 \times 2 = 10 \end{align*}\]
2. Combine into one log:
\[\begin{align*} \log_{10} 5 + \log_{10} 2 = \log_{10} 10 \end{align*}\]
3. Simplify:
Since $\log_{10} 10 = 1$, the answer is $1$.
Simplify $\log_3 3 + \log_3 9$
Solution:
1. Multiply inside numbers:
\[\begin{align*} 3 \times 9 = 27 \end{align*}\]
2. Combine:
\[\begin{align*} \log_3 3 + \log_3 9 = \log_3 27 \end{align*}\]
3. Simplify:
Since $3^3 = 27$, we have $\log_3 27 = 3$
Adding logs is easy when you remember to multiply the numbers inside.
\[ \begin{array}{|c|} \hline \text{\Large Adding Logs: } \log_b M + \log_b N = \log_b (M \times N) \\ \hline \end{array} \]