To find the derivative of $e^x$, we must first define $e$. We define $e$ as:
\[ \begin{align*} e = \lim_{n\to\infty}(1+\dfrac1n)^n \end{align*} \]
This can alternatively be written as:
\[ \begin{align*} e = \lim_{n\to0}(1+\dfrac1n)^\dfrac1n \end{align*} \]
We will now use the limit definition of a derivative to find the derivative of $e^x$. For a refresher on the limit of a derivative, check out (insert link). We write the derivative of $e^x$ as:
\[ \begin{align*} \dfrac{d}{dx}(e^x)= \lim_{h\to0} \dfrac{e^{x+h} – e^x}{h} \dfrac{d}{dx}(e^x)= \lim_{h\to0} \dfrac{e^x\cdot e^h- e^x}{h} \end{align*} \]
We will now factor $e^x$ out of the limit. We can do this because the limit is with respect to $h$, not $x$. The new derivative is:
\[ \begin{align*} \dfrac{d}{dx}(e^x)= e^x \cdot \lim_{h\to0} \dfrac{e^h – 1}{h} \end{align*} \]
We will now define a new variable, $n$, such that:
\[ \begin{align*} n = e^h – 1\\ n + 1 = e^h\\ \ln(n+1) = h \end{align*} \]
We will substitute $n$ into the numerator and denominator of the original equation. We will also change the variable in the limit. Since $n$ approaches $0$ as $h$ approaches $0$, we substitute appropriately:
\[ \begin{align*} \dfrac{d}{dx}(e^x)= e^x \cdot \lim_{n\to0} \dfrac{n}{\ln(n+1)} \end{align*} \]
We will multiply the numerator and denominator of the limit by $\dfrac1n$ and move the $\dfrac1n$ in the denominator inside of the $ln$ function:
\[ \begin{align*} \dfrac{d}{dx}(e^x)= e^x \cdot \lim_{n\to0} \dfrac{1}{\dfrac1n\cdot\ln(n+1)}\\ \dfrac{d}{dx}(e^x)= e^x \cdot \lim_{n\to0} \dfrac{1}{\cdot\ln((n+1)^{\dfrac1n})}\\ \end{align*} \]
Since we’ve established that $e = \lim_{n\to0}(1+\dfrac1n)^\dfrac1n$, we can substitute $e$ into the equation like so:
\[ \begin{align*} \dfrac{d}{dx}(e^x)= e^x \cdot \lim_{n\to0} \dfrac{1}{\cdot\ln(e)}\\ \end{align*} \]
Since $ln(e)$ = 1:
\[ \begin{align*} \dfrac{d}{dx}(e^x)= e^x \cdot \lim_{n\to0} \dfrac{1}{1}\\ \dfrac{d}{dx}(e^x)= e^x \end{align*} \]
Thus, the derivative of $e^x$ is $e^x$.
You are here:
- Home
- Derivatives
- Derivative of $e^x$
Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.
Derivative of $e^x$
- I Aced Calculus Team
- October 7th, 2024
- Categories: Derivatives