Limits

Limit of Absolute Value

Introduction The limit of an absolute value function often involves determining how the function behaves as the input approaches a particular point, especially around points where the expression inside the absolute value changes sign. Key Concept Often limits involving absolute value do not exist. For example: $$\lim_{x\to0}\dfrac{x}{|x|}.$$ Because of the discontinuity on the graph of…

Read article
Limits of Trig Functions

1 Introduction Oftentimes in calculus, we must compute limits that involve trig functions. For example, $$\lim_{x\to{a}}\sin{x}$$ or the limit of any other expression that contains a trig function. This specific limit asks “what value does $\sin{x}$ approach as $x$ approaches $a$?” Keep in mind that some trig limits do not exist. Because of the oscillation…

Read article
Related Rates Ladder Problem

Introduction One of the most common related rates problems is the ladder problem, which looks at how a ladder slides down a wall, assuming that the ladder always makes a right triangle with the wall. Let’s see how to solve these sorts of problems by working through a simple example. Example Let’s consider a ladder…

Read article
Limits of Rational Functions

Introduction In calculus, we often need to find the limit of a function as it approaches a certain value. A common scenario involves the limit of a ratio of two functions, which we call rational functions. The general form looks like this: $$\lim_{x \to a} \frac{f(x)}{g(x)}$$ This expression asks: “What value does the fraction approach…

Read article