Master Calculus! Get instant help on “I Aced Calculus AP” App. Hundreds of flashcards and practice questions at your fingertips. Download now on the App Store and Google Play.

Integration Formula Sheet

Fundamental Theorem of Calculus:

Part one:
$$\int_a^bf(x)\:dx=F(b)-F(a)$$

Where $F(x)$ is an antiderivative of $f(x)$

Part two:
$$\dfrac{d}{dx}\int^x_af(t)\:dt=f(x)$$

Basic Integration Rules:

Constant Rule: $\displaystyle{\int} 0 \:dx =C$

Constant Multiple Rule: $\displaystyle{\int} Cf(x) \:dx = C\displaystyle{\int}f(x) \:dx$

Sum and Difference Rule: $\displaystyle{\int}\left[ f(x)\pm g(x) \right]\:dx = \displaystyle{\int}f(x) \:dx\pm \displaystyle{\int}g(x)\:dx$
Power Rule: $\displaystyle{\int}x^n \:dx= \dfrac{x^{n+1}}{n+1}+C$

Inverse Bounds Rule: $\displaystyle{\int^b_a}f(x)\:dx=-\displaystyle{\int^a_b}f(x)\:dx$
Interval Addition Rule: $\displaystyle{\int^b_a}f(x)\:dx+\displaystyle{\int_b^c}f(x)\:dx=\displaystyle{\int^c_a}f(x)\:dx$

Equal Limits Rule: $\displaystyle{\int^a_a}f(x)\:dx=0$

Basic Integration Techniques:

Integration by Parts:

$$\int u(x)v'(x)\:dx=u(x)v(x)-\int v(x)v'(x)\:dx$$

Integration by Substitution:

$$\int f(g(x))g'(x)\:dx= \int f(u)\:du$$

Where $u=g(x)$ and $du = g'(x)\:dx$

Exponential and Logarithmic Integrals

$$\begin{array}{lll} \displaystyle{\int} e^x \: dx = e^x + C && \displaystyle{\int} a^x \: dx = \dfrac{a^x}{\ln{a}} + C \\[10pt] \displaystyle{\int} \dfrac{1}{x} \: dx = \ln{|x|} + C && \displaystyle{\int} \dfrac{1}{x \ln{a}} \: dx = \log_a |x| + C \end{array}$$

Trigonometric Integrals

\[ \begin{align*} &\hspace{-2cm}\int \sin x \: dx = -\cos x + C &\int \sec x \tan x \: dx = \sec x + C \\ &\hspace{-2cm}\int \cos x \: dx = \sin x + C &\int \csc x \cot x \: dx = -\csc x + C \\ &\hspace{-2cm}\int \tan x \: dx = -\ln |\cos x| + C & \int \cot x \: dx = \ln |\sin x| + C\\ &\hspace{-2cm}\int \sec^2 x \: dx = \tan x + C & \int \csc^2 x \: dx = -\cot x + C\\ \end{align*} \]

Inverse Trigonometric Integrals

\[ \begin{align*} &\hspace{-0.5cm}\int \sin^{-1} x \: dx = x \sin^{-1} x + \sqrt{1-x^2} + C &\int \sec^{-1} x \: dx = x \sec^{-1} x – \ln |x + \sqrt{x^2 – 1}| + C \\ &\hspace{-.5cm}\int \cos^{-1} x \: dx = x \cos^{-1} x + \sqrt{1-x^2} + C &\int \csc^{-1} x \: dx = x \csc^{-1} x – \ln |x + \sqrt{x^2 – 1}| + C \\ &\hspace{-.5cm}\int \tan^{-1} x \: dx = x \tan^{-1} x – \dfrac{1}{2} \ln(x^2 + 1) + C & \int \cot^{-1} x \: dx = x \cot^{-1} x + \dfrac{1}{2} \ln(x^2 + 1) + C \end{align*} \]


NEED QUICK

CALC HELP?

Download the I Aced Calculus App today!

ALL Calc Topics, 1000+ of PRACTICE questions


Related Problems

NEED QUICK

  • ALL Calc Topics
    AB and BC
  • 1000+
    PRACTICE questions
  • 400+ FLASHCARDS
  • VIDEO tutorials

CALC HELP?

Download the I Aced Calculus App today!