Trigonometry Problems

- 1. Convert the following from degrees to radians:
 - (a) 90°
 - (b) 135°
 - (c) 405°
- 2. Convert the following from radians to degrees:

(a)
$$\frac{11\pi}{4}$$

(b) $\frac{7\pi}{6}$
(c) $\frac{\pi}{2} + \frac{\pi}{3}$

- 3. Evaluate the following trigonometric functions:
 - (a) $\sin 60^{\circ}$
 - (b) $\cos 135^{\circ}$
 - (c) $\sec \pi$
 - (d) $\tan \frac{7\pi}{4}$

- 4. In the following diagram, find:
 - (a) The missing side lengths.
 - (b) $\tan x$, $\sec y$, and $\sin (x + y)$.

- 5. Determine the equation of a sine function with amplitude 2, period π , and midline y = 4.
- 6. Sketch one period of the function $f(x) = 2\cos\left(\frac{x}{2}\right) + 1$.
- 7. Simplify $\frac{(\csc^2 x)(\tan x)}{2\cot x}$.
- 8. Solve the following trigonometric equations for $0 \le x < 2\pi$:
 - (a) $2\sin x = \tan x$
 - (b) $\sin^2 x + 2\cos^2 x = 2$
- 9. Suppose that $\cos x = \frac{\sqrt{3}}{2}$ and $\tan y = \sqrt{3}$ in the interval $x, y \in \left[0, \frac{\pi}{2}\right]$. Find the value of $\cos(x+y)$.
- 10. Given that $\sec^2 x = 4$ in the interval $\frac{3\pi}{2} \le x \le 2\pi$, find $\tan x$.

11. Determine the equation of the sine wave below. (Assume that the amplitude of the graph is $\frac{1}{2}$.)

- 12. Determine the domain and the range of the following functions:
 - (a) $f(x) = -2\sin(2x) + 5$
 - (b) $g(x) = 7\cos x 2$
 - (c) $h(x) = \arcsin(2x)$

13. In the figure below is a right triangle $\triangle ABC$.

- (a) If $\operatorname{arcsin}\left(\frac{AB}{AC}\right) = \frac{\pi}{3}$, what would be the measure of β in radians.
- (b) If $\tan \beta = \frac{4}{3}$, what would be the degree measure of $\arcsin\left(\frac{BC}{AC}\right)$, rounded to the nearest tenth of a degree.

14. If Martin stands x feet away from a building and looks at the top of the building, his sight line forms an angle of 50° with the ground. If he walks 2000 feet away from the building and looks at the top of the building, his sight line forms an angle of 20° with the ground. Find x.

- 15. Determine the unknown value given the information about ΔABC .
 - (a) Given that AC = 9 and $\sin \beta = \frac{5}{18}$, find *BC*.
 - (b) Given that $\tan \beta = \frac{15}{8}$, find $\frac{AB}{AC}$.
 - (c) Given that AB = 5 and BC = 3, find $\cos(90^{\circ} \beta)$.

