Trigonometry Solutions

1. (a)
$$90^{\circ} = 90^{\circ} \cdot \frac{2\pi}{360^{\circ}} = \left[\frac{\pi}{2}\right]$$

(b) $135^{\circ} = 135^{\circ} \cdot \frac{2\pi}{360^{\circ}} = \left[\frac{3\pi}{4}\right]$
(c) $405^{\circ} = 405^{\circ} \cdot \frac{2\pi}{360^{\circ}} = \left[\frac{9\pi}{4}\right]$
2. (a) $\frac{11\pi}{4} = \frac{11\pi}{4} \cdot \frac{360^{\circ}}{2\pi} = \left[\frac{495^{\circ}}{2}\right]$
(b) $\frac{7\pi}{6} = \frac{7\pi}{6} \cdot \frac{360^{\circ}}{2\pi} = \left[\frac{210^{\circ}}{2\pi}\right]$
(c) $\frac{\pi}{2} + \frac{\pi}{3} = \frac{5\pi}{6} = \frac{5\pi}{6} \cdot \frac{360^{\circ}}{2\pi} = \left[\frac{150^{\circ}}{2}\right]$

3. (a) Using the fact that 30-60-90 right triangles have side ratios of $\frac{1}{2}$: $\frac{\sqrt{3}}{2}$: 1, we obtain that $\sin 60^\circ = \boxed{\frac{\sqrt{3}}{2}}$.

© I Aced Calculus, LLC

4. (a) By the Pythagorean Theorem, we observe that $8^2 + 15^2 = a^2$. Solving for *a*, we get that a = 17. Similarly, using the Pythagorean Theorem we have $15^2 + 20^2 = b^2$, so b = 25.

(b) Note that
$$\tan x = \frac{AD}{BD} = \frac{15}{20} = \boxed{\frac{3}{4}}$$
. Similarly, $\sec y = \frac{AC}{CD} = \boxed{\frac{17}{8}}$.
Lastly, $\sin(x+y) = \sin x \cdot \cos y + \cos x \cdot \sin y = \frac{15}{b} \cdot \frac{8}{a} + \frac{20}{b} \cdot \frac{15}{a} = \boxed{\frac{84}{85}}$

- 5. The general form of the equation of a sine function is $f(x) = a \sin(bx c) + d$, where *a* is the amplitude, $\frac{2\pi}{b}$ is the period, $\frac{c}{b}$ is the phase shift, and y = d is the midline. Plugging in the given values, we obtain that a = 2, b = 2, c = 0, and d = 4. Thus, our desired equation is $f(x) = 2 \sin 2x + 4$. Notice that there are other possible answers, since the sine function is periodic. For example, $f(x) = 2 \sin(2x + 6\pi) + 4$ and $f(x) = 2 \sin(2x 12\pi) + 4$ result in the same sine curve.
- 6. The period of $f(x) = 2\cos\left(\frac{x}{2}\right) + 1$ is 4π . We can create a table of values for $0 \le x \le 4\pi$ at certain points to help us sketch f(x):

x	f(x)	
0	3	
π	1	
2π	-1	
3π	1	
4π	3	

After plotting these points and connecting them by a curve, we obtain the graph

7. We rewrite all trigonometric functions in terms of sin *x* and cos *x*:

$$\frac{(\csc^2 x)(\tan x)}{2\cot x} = \frac{\left(\frac{1}{\sin^2 x}\right)\left(\frac{\sin x}{\cos x}\right)}{2\left(\frac{\cos x}{\sin x}\right)} = \boxed{\frac{1}{2\cos^2 x}}$$

8. (a) We observe that the equation is equivalent to

$$2\sin x = \frac{\sin x}{\cos x} \Rightarrow 2\sin x - (\sin x)\frac{1}{\cos x} = 0 \Rightarrow \sin x \left(2 - \frac{1}{\cos x}\right) = 0.$$

It follows that either sin x = 0, or cos $x = \frac{1}{2}$. Thus, the solutions are $0, \frac{\pi}{3}, \pi, \frac{5\pi}{3}$.

- (b) Notice that $\sin^2 x + \cos^2 x = 1$. The equation $\sin^2 x + 2\cos^2 x = 2$ can be rewritten as $\sin^2 x + \cos^2 x + \cos^2 x = 2$, which simplifies to $\cos^2 x = 1$. It follows that either $\cos x = 1$ or $\cos x = -1$, and our solutions are $\frac{\pi}{2}, \frac{3\pi}{2}$.
- 9. We will use the Pythagorean Identity $\sin^2 x + \cos^2 x = 1$ twice. This gives us that

$$\sin x = \sqrt{1 - \cos^2 x} = \frac{1}{2}$$

We select the positive root since $\sin x$ is positive because x is in quadrant 1. Secondly, since $\tan y = \sqrt{3}$, $\frac{\sin y}{\cos y} = \sqrt{3} \Rightarrow \sin y = \sqrt{3} \cdot \cos y \Rightarrow \sin^2 y = 3\cos^2 y$, so by the Pythagorean Identity

$$\sin^2 y + \cos^2 y = 1 \Rightarrow 3\cos^2 y + \cos^2 y = 1 \Rightarrow \cos y = \frac{1}{2}.$$

This means that $\sin y = \frac{\sqrt{3}}{2}$. Again, we select the positive solutions since *y* is also in quadrant 1.

Finally, we see that $\cos(x + y) = \cos x \cos y - \sin x \sin y = \frac{\sqrt{3}}{2} \cdot \frac{1}{2} - \frac{1}{2} \cdot \frac{\sqrt{3}}{2} = 0$.

10. Using the fact that $1 + \tan^2 x = \sec^2 x$ and the fact that $\tan x$ is negative in quadrant 4,

$$1 + \tan^2 x = \sec^2 x \Rightarrow \tan^2 x = \sec^2 x - 1 = 3 \Rightarrow \tan x = \boxed{-\sqrt{3}}.$$

© I Aced Calculus, LLC

11. We want to find an equation that describes the graph in the form $f(x) = a \sin(bx - c) + d$. Note that the graph of the function decreases when *x* increases from 0, which means that *a* is negative (if *a* was positive, the function would be increasing). Since the amplitude of the graph is $\frac{1}{2}$, we know that $a = -\frac{1}{2}$. Next, we note that the period of the function is π , so $b = \frac{2\pi}{\pi} = 2$. Since the graph doesn't have a phase shift, we obtain that c = 0. Lastly, the midline is y = 1, so d = 1.

Thus, the graph of the function is $f(x) = -\frac{1}{2}\sin x + 1$. Notice that there may be other possible solutions because $\sin x$ is a periodic function, such as $-\frac{1}{2}\sin(x+2\pi) + 1$.

- 12. (a) sin *x* is defined for all real values of *x*, so the domain of f(x) is $x \in \mathbb{R}$. Since the range of sin *x* is [-1, 1] (and the same for sin 2*x*), we obtain that the lowest value of f(x) is -2 + 5 = 3, and the highest value is 2 + 5 = 7. Thus, the range of f(x) is $y \in [3, 7]$.
 - (b) $\cos x$ is defined for all real values of x, so the domain of g(x) is $x \in \mathbb{R}$. Since the range of $\cos x$ is [-1,1], we obtain that the lowest value of g(x) is -7-2 = -9, and the highest value is 7-2 = 5. Thus, the range of g(x) is $y \in [-9,5]$.
 - (c) The domain of $\arcsin(2x)$ is the same as the range of $\sin(2x)$ because $\arcsin x$ is the inverse of $\sin x$ restricted to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Hence, the domain of h(x) is $x \in [-1,1]$ and the range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
- 13. (a) Observe that

$$\operatorname{arcsin}\left(\frac{AB}{AC}\right) = \frac{\pi}{3}$$
$$m \angle C = \frac{\pi}{3}$$
$$\beta = \frac{\pi}{2} - m \angle C = \frac{\pi}{6}$$

(b) Since $\tan \beta = \frac{4}{3}$, we may let AB = 3, BC = 4 to find the ratio $\frac{BC}{AC}$. By the Pythagorean Theorem, ΔABC is a 3-4-5 right triangle, so AC = 5 and $\arcsin\left(\frac{BC}{AC}\right) = \arcsin\left(\frac{4}{5}\right) \approx 53.1^{\circ}$

© I Aced Calculus, LLC

14. Note that

$$\tan 20^\circ = \frac{AB}{2000 + x}$$
$$\tan 50^\circ = \frac{AB}{x}.$$

From this, it is clear that $x \cdot \tan 50^\circ = (2000 + x) \cdot \tan 20^\circ$, which is a linear equation in one variable. We solve it to obtain

$$x(\tan 50^\circ - \tan 20^\circ) = 2000 \cdot \tan 20^\circ \Rightarrow x = \frac{2000 \cdot \tan 20^\circ}{\tan 50^\circ - \tan 20^\circ} \approx \boxed{879.4 \text{ ft}}$$

15. (a) Since $\sin \beta = \frac{BC}{AC} = \frac{5}{18}$, we see that $BC = \frac{5}{18}AC = \frac{5}{2}$.

(b) Because $\tan \beta = \frac{15}{8}$, to find the ratio $\frac{AB}{AC}$, we may let BC = 15 and AB = 8. Then $AC = \sqrt{AB^2 + BC^2} = \sqrt{8^2 + 15^2} = 17$, so $\frac{AB}{AC} = \frac{8}{17}$.

(c) Note that $\cos(90^\circ - \beta) = \sin \beta$. We have that

$$AC = \sqrt{3^2 + 5^2} = \sqrt{34}$$

Therefore, it follows that $\cos(90^\circ - \beta) = \frac{BC}{AC} = \frac{3}{\sqrt{34}} = \boxed{\frac{3\sqrt{34}}{34}}$