Trigonometry Solutions

1. (a) $90^{\circ}=90^{\circ} \cdot \frac{2 \pi}{360^{\circ}}=\frac{\pi}{2}$
(b) $135^{\circ}=135^{\circ} \cdot \frac{2 \pi}{360^{\circ}}=\frac{3 \pi}{4}$
(c) $405^{\circ}=405^{\circ} \cdot \frac{2 \pi}{360^{\circ}}=\frac{9 \pi}{4}$
2. (a) $\frac{11 \pi}{4}=\frac{11 \pi}{4} \cdot \frac{360^{\circ}}{2 \pi}=495^{\circ}$
(b) $\frac{7 \pi}{6}=\frac{7 \pi}{6} \cdot \frac{360^{\circ}}{2 \pi}=210^{\circ}$
(c) $\frac{\pi}{2}+\frac{\pi}{3}=\frac{5 \pi}{6}=\frac{5 \pi}{6} \cdot \frac{360^{\circ}}{2 \pi}=150^{\circ}$
3. (a) Using the fact that $30-60-90$ right triangles have side ratios of $\frac{1}{2}: \frac{\sqrt{3}}{2}: 1$, we obtain that $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$.

(b) Using the fact that 45-45-90 right triangles have side ratios of $1: 1: \sqrt{2}$, we obtain that $\cos 45^{\circ}=-\frac{\sqrt{2}}{2}$. Since 135° is in quadrant 2 with reference angle $45^{\circ}, \cos 135^{\circ}=$ $-\cos 45^{\circ}=-\frac{\sqrt{2}}{2}$.

(c) We observe that $\sec \pi=\frac{1}{\cos \pi}=\frac{1}{-1}=-1$.
(d) Notice that $\sin \frac{\pi}{4}=\cos \frac{\pi}{4}$, so $\tan \frac{\pi}{4}=\frac{\sin \frac{\pi}{4}}{\cos \frac{\pi}{4}}=1$. Since $\frac{7 \pi}{4}$ is in quadrant 4 and the reference angle is $\frac{\pi}{4}, \tan \frac{7 \pi}{4}=-\tan \frac{\pi}{4}=-1$.

4. (a) By the Pythagorean Theorem, we observe that $8^{2}+15^{2}=a^{2}$. Solving for a, we get that $a=17$. Similarly, using the Pythagorean Theorem we have $15^{2}+20^{2}=b^{2}$, so $b=25$.
(b) Note that $\tan x=\frac{A D}{B D}=\frac{15}{20}=\frac{3}{4}$. Similarly, $\sec y=\frac{A C}{C D}=\frac{17}{8}$.

Lastly, $\sin (x+y)=\sin x \cdot \cos y+\cos x \cdot \sin y=\frac{15}{b} \cdot \frac{8}{a}+\frac{20}{b} \cdot \frac{15}{a}=\frac{84}{85}$
5. The general form of the equation of a sine function is $f(x)=a \sin (b x-c)+d$, where a is the amplitude, $\frac{2 \pi}{b}$ is the period, $\frac{c}{b}$ is the phase shift, and $y=d$ is the midline. Plugging in the given values, we obtain that $a=2, b=2, c=0$, and $d=4$. Thus, our desired equation is $f(x)=2 \sin 2 x+4$. Notice that there are other possible answers, since the sine function is periodic. For example, $f(x)=2 \sin (2 x+6 \pi)+4$ and $f(x)=2 \sin (2 x-12 \pi)+4$ result in the same sine curve.
6. The period of $f(x)=2 \cos \left(\frac{x}{2}\right)+1$ is 4π. We can create a table of values for $0 \leq x \leq 4 \pi$ at certain points to help us sketch $f(x)$:

x	$f(x)$
0	3
π	1
2π	-1
3π	1
4π	3

After plotting these points and connecting them by a curve, we obtain the graph

7. We rewrite all trigonometric functions in terms of $\sin x$ and $\cos x$:

$$
\frac{\left(\csc ^{2} x\right)(\tan x)}{2 \cot x}=\frac{\left(\frac{1}{\sin ^{2} x}\right)\left(\frac{\sin x}{\cos x}\right)}{2\left(\frac{\cos x}{\sin x}\right)}=\frac{1}{2 \cos ^{2} x}
$$

8. (a) We observe that the equation is equivalent to

$$
2 \sin x=\frac{\sin x}{\cos x} \Rightarrow 2 \sin x-(\sin x) \frac{1}{\cos x}=0 \Rightarrow \sin x\left(2-\frac{1}{\cos x}\right)=0
$$

It follows that either $\sin x=0$, or $\cos x=\frac{1}{2}$. Thus, the solutions are $0, \frac{\pi}{3}, \pi, \frac{5 \pi}{3}$.
(b) Notice that $\sin ^{2} x+\cos ^{2} x=1$. The equation $\sin ^{2} x+2 \cos ^{2} x=2$ can be rewritten as $\sin ^{2} x+\cos ^{2} x+\cos ^{2} x=2$, which simplifies to $\cos ^{2} x=1$. It follows that either $\cos x=1$ or $\cos x=-1$, and our solutions are $\frac{\pi}{2}, \frac{3 \pi}{2}$.
9. We will use the Pythagorean Identity $\sin ^{2} x+\cos ^{2} x=1$ twice. This gives us that

$$
\sin x=\sqrt{1-\cos ^{2} x}=\frac{1}{2}
$$

We select the positive root since $\sin x$ is positive because x is in quadrant 1 . Secondly, since $\tan y=\sqrt{3}, \frac{\sin y}{\cos y}=\sqrt{3} \Rightarrow \sin y=\sqrt{3} \cdot \cos y \Rightarrow \sin ^{2} y=3 \cos ^{2} y$, so by the Pythagorean Identity

$$
\sin ^{2} y+\cos ^{2} y=1 \Rightarrow 3 \cos ^{2} y+\cos ^{2} y=1 \Rightarrow \cos y=\frac{1}{2}
$$

This means that $\sin y=\frac{\sqrt{3}}{2}$. Again, we select the positive solutions since y is also in quadrant 1.
Finally, we see that $\cos (x+y)=\cos x \cos y-\sin x \sin y=\frac{\sqrt{3}}{2} \cdot \frac{1}{2}-\frac{1}{2} \cdot \frac{\sqrt{3}}{2}=0$.
10. Using the fact that $1+\tan ^{2} x=\sec ^{2} x$ and the fact that $\tan x$ is negative in quadrant 4 ,

$$
1+\tan ^{2} x=\sec ^{2} x \Rightarrow \tan ^{2} x=\sec ^{2} x-1=3 \Rightarrow \tan x=-\sqrt{3}
$$

11. We want to find an equation that describes the graph in the form $f(x)=a \sin (b x-c)+d$. Note that the graph of the function decreases when x increases from 0 , which means that a is negative (if a was positive, the function would be increasing). Since the amplitude of the graph is $\frac{1}{2}$, we know that $a=-\frac{1}{2}$. Next, we note that the period of the function is π, so $b=\frac{2 \pi}{\pi}=2$. Since the graph doesn't have a phase shift, we obtain that $c=0$. Lastly, the midline is $y=1$, so $d=1$.
Thus, the graph of the function is $f(x)=-\frac{1}{2} \sin x+1$. Notice that there may be other possible solutions because $\sin x$ is a periodic function, such as $-\frac{1}{2} \sin (x+2 \pi)+1$.
12. (a) $\sin x$ is defined for all real values of x, so the domain of $f(x)$ is $x \in \mathbb{R}$. Since the range of $\sin x$ is $[-1,1]$ (and the same for $\sin 2 x$), we obtain that the lowest value of $f(x)$ is $-2+5=3$, and the highest value is $2+5=7$. Thus, the range of $f(x)$ is $y \in[3,7]$.
(b) $\cos x$ is defined for all real values of x, so the domain of $g(x)$ is $x \in \mathbb{R}$. Since the range of $\cos x$ is $[-1,1]$, we obtain that the lowest value of $g(x)$ is $-7-2=-9$, and the highest value is $7-2=5$. Thus, the range of $g(x)$ is $y \in[-9,5]$.
(c) The domain of $\arcsin (2 x)$ is the same as the range of $\sin (2 x)$ because $\arcsin x$ is the inverse of $\sin x$ restricted to the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Hence, the domain of $h(x)$ is $x \in[-1,1]$ and the range is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
13. (a) Observe that

$$
\begin{aligned}
\arcsin \left(\frac{A B}{A C}\right) & =\frac{\pi}{3} \\
m \angle C & =\frac{\pi}{3} \\
\beta & =\frac{\pi}{2}-m \angle C=\frac{\pi}{6} .
\end{aligned}
$$

(b) Since $\tan \beta=\frac{4}{3}$, we may let $A B=3, B C=4$ to find the ratio $\frac{B C}{A C}$. By the Pythagorean Theorem, $\triangle A B C$ is a 3-4-5 right triangle, so $A C=5$ and $\arcsin \left(\frac{B C}{A C}\right)=\arcsin \left(\frac{4}{5}\right) \approx$ 53.1°
14. Note that

$$
\begin{array}{r}
\tan 20^{\circ}=\frac{A B}{2000+x} \\
\tan 50^{\circ}=\frac{A B}{x}
\end{array}
$$

From this, it is clear that $x \cdot \tan 50^{\circ}=(2000+x) \cdot \tan 20^{\circ}$, which is a linear equation in one variable. We solve it to obtain

$$
x\left(\tan 50^{\circ}-\tan 20^{\circ}\right)=2000 \cdot \tan 20^{\circ} \Rightarrow x=\frac{2000 \cdot \tan 20^{\circ}}{\tan 50^{\circ}-\tan 20^{\circ}} \approx 879.4 \mathrm{ft}
$$

15. (a) Since $\sin \beta=\frac{B C}{A C}=\frac{5}{18}$, we see that $B C=\frac{5}{18} A C=\frac{5}{2}$.
(b) Because $\tan \beta=\frac{15}{8}$, to find the ratio $\frac{A B}{A C}$, we may let $B C=15$ and $A B=8$. Then $A C=\sqrt{A B^{2}+B C^{2}}=\sqrt{8^{2}+15^{2}}=17$, so $\frac{A B}{A C}=\boxed{\frac{8}{17}}$.
(c) Note that $\cos \left(90^{\circ}-\beta\right)=\sin \beta$. We have that

$$
A C=\sqrt{3^{2}+5^{2}}=\sqrt{34}
$$

Therefore, it follows that $\cos \left(90^{\circ}-\beta\right)=\frac{B C}{A C}=\frac{3}{\sqrt{34}}=\frac{3 \sqrt{34}}{34}$.

