Pre-BC Topics Problems

1. Perform the partial fraction decomposition to solve for the capital-letter variables:

(a)
$$\frac{8x-5}{x^2-x} = \frac{A}{x-1} + \frac{B}{x}$$

(b) $\frac{x^2+2x-1}{x^2-1} = 1 + \frac{C}{x-1} + \frac{D}{x+1}$
(c) $\frac{2x^2+x+9}{x^2-x-6} = 2 + \frac{E}{x-3} + \frac{F}{x+2}$

- 2. The first term of an arithmetic sequence is 7. Given that the sum of the fourth and fifth term is 42, find the sixth term.
- 3. Ana is trying to increase the amount of exercise she does every day. On the first day she walks a mile. On the second day she walks 1.5 miles. On her k^{th} day, she walks 0.5(k + 1) miles. How many days will it take for her to have walked at least 100 miles in total?
- 4. Given that the second term of a geometric sequence is 18, and the fourth term is $\frac{81}{2}$, find the sum of the first three terms.
- 5. Determine the value of the following:
 - (a) The sum of the first six terms of an arithmetic sequence with $a_2 = 7$ and $a_7 = 22$.
 - (b) The sum of the first four terms of a geometric sequence with $a_1 = 5$ and common ratio r = 3.
 - (c) The sum of the infinite geometric series $20 + \frac{40}{3} + \frac{80}{9} + \frac{160}{27} + \dots$
- 6. Inflation in a certain city is rampant, and prices increase by 10% every day. Alex buys bread every day, but is worried he'll run out of money. Given that the price of bread is \$5 on day one, determine on which day Alex will spend more than \$100 in total.
- 7. Convert the following Cartesian coordinates to polar coordinates:
 - (a) $(\sqrt{2}, \sqrt{2})$
 - (b) $(-500, 500\sqrt{3})$

© I Aced Calculus, LLC

1

(c)
$$\left(\frac{17\sqrt{3}}{2}, -\frac{17}{2}\right)$$

- 8. Convert the following polar coordinates to Cartesian coordinates:
 - (a) $(5, 120^{\circ})$
 - (b) $(3\sqrt{2}, \frac{\pi}{4})$ (c) $(6, \frac{4\pi}{3})$
- 9. Convert the equation $(x 1)^2 + (y 3)^2 = 4$ into polar form.
- 10. Convert the equation $r^2 + 4r \cos \theta + 6r \sin \theta 3 = 0$ into the equation of a circle.
- 11. Convert the following equations into parametric form:
 - (a) 4x + 2y = 8
 - (b) $(x-5)^2 + (y+3)^2 = 16$ (c) $\frac{x^2}{4} + \frac{y^2}{9} = 25$
- 12. Write the equation of the circle below in parametric form:

13. A particle moves on a circle of radius 2 cm, centered at (3, 4). At time t = 0, the particle starts at the point (5, 4), and travels counterclockwise around the entire circle in 10 seconds. Determine the parametric equations for the location of the particle.

- 14. Given that $\vec{x} = \langle 5, -3 \rangle$, and $\vec{y} = \langle 6, 10 \rangle$, compute:
 - (a) $-\vec{x} + 4\vec{y}$
 - (b) $2\vec{x} (\vec{y} + \langle 2, 7 \rangle)$
 - (c) $\vec{x} \cdot \vec{y}$
 - (d) The vector parallel to \vec{x} with a magnitude of 8.
- 15. A force of 100N is applied at a 30° angle above the horizontal on a box. Similarly, a force of 150N is applied but at a 150° angle above the horizontal. see diagram. Find the magnitude of the resultant force exerted on the box.

