Pre-BC Topics Problems

1. Perform the partial fraction decomposition to solve for the capital-letter variables:
(a) $\frac{8 x-5}{x^{2}-x}=\frac{A}{x-1}+\frac{B}{x}$
(b) $\frac{x^{2}+2 x-1}{x^{2}-1}=1+\frac{C}{x-1}+\frac{D}{x+1}$
(c) $\frac{2 x^{2}+x+9}{x^{2}-x-6}=2+\frac{E}{x-3}+\frac{F}{x+2}$
2. The first term of an arithmetic sequence is 7 . Given that the sum of the fourth and fifth term is 42 , find the sixth term.
3. Ana is trying to increase the amount of exercise she does every day. On the first day she walks a mile. On the second day she walks 1.5 miles. On her $k^{\text {th }}$ day, she walks $0.5(k+1)$ miles. How many days will it take for her to have walked at least 100 miles in total?
4. Given that the second term of a geometric sequence is 18 , and the fourth term is $\frac{81}{2}$, find the sum of the first three terms.
5. Determine the value of the following:
(a) The sum of the first six terms of an arithmetic sequence with $a_{2}=7$ and $a_{7}=22$.
(b) The sum of the first four terms of a geometric sequence with $a_{1}=5$ and common ratio $r=3$.
(c) The sum of the infinite geometric series $20+\frac{40}{3}+\frac{80}{9}+\frac{160}{27}+\ldots$
6. Inflation in a certain city is rampant, and prices increase by 10% every day. Alex buys bread every day, but is worried he'll run out of money. Given that the price of bread is $\$ 5$ on day one, determine on which day Alex will spend more than $\$ 100$ in total.
7. Convert the following Cartesian coordinates to polar coordinates:
(a) $(\sqrt{2}, \sqrt{2})$
(b) $(-500,500 \sqrt{3})$
(c) $\left(\frac{17 \sqrt{3}}{2},-\frac{17}{2}\right)$
8. Convert the following polar coordinates to Cartesian coordinates:
(a) $\left(5,120^{\circ}\right)$
(b) $\left(3 \sqrt{2}, \frac{\pi}{4}\right)$
(c) $\left(6, \frac{4 \pi}{3}\right)$
9. Convert the equation $(x-1)^{2}+(y-3)^{2}=4$ into polar form.
10. Convert the equation $r^{2}+4 r \cos \theta+6 r \sin \theta-3=0$ into the equation of a circle.
11. Convert the following equations into parametric form:
(a) $4 x+2 y=8$
(b) $(x-5)^{2}+(y+3)^{2}=16$
(c) $\frac{x^{2}}{4}+\frac{y^{2}}{9}=25$
12. Write the equation of the circle below in parametric form:

13. A particle moves on a circle of radius 2 cm , centered at (3, 4). At time $t=0$, the particle starts at the point $(5,4)$, and travels counterclockwise around the entire circle in 10 seconds. Determine the parametric equations for the location of the particle.
14. Given that $\vec{x}=\langle 5,-3\rangle$, and $\vec{y}=\langle 6,10\rangle$, compute:
(a) $-\vec{x}+4 \vec{y}$
(b) $2 \vec{x}-(\vec{y}+\langle 2,7\rangle)$
(c) $\vec{x} \cdot \vec{y}$
(d) The vector parallel to \vec{x} with a magnitude of 8 .
15. A force of 100 N is applied at a 30° angle above the horizontal on a box. Similarly, a force of 150 N is applied but at a 150° angle above the horizontal. see diagram. Find the magnitude of the resultant force exerted on the box.

