Pre-BC Topics Solutions

1. (a) Notice that $x^{2}-x=x(x-1)$. Thus, we can clear the denominators by multiplying both sides by $x(x-1)$. Next, set the coefficients of the corresponding powers of x equal and solve the resulting system:

$$
8 x-5=A x+B(x-1) \Rightarrow 8 x-5=(A+B) x-B \Rightarrow\left\{\begin{array}{l}
A+B=8 \\
B=5
\end{array}\right.
$$

so the solution is $A=3, B=5$.
(b) Since $x^{2}-1=(x-1)(x+1)$, we can clear the denominators by multiplying both sides by $(x-1)(x+1)$. This yields

$$
\begin{aligned}
& x^{2}+2 x-1=x^{2}-1+C x+C+D x-D \\
& 2 x=(C+D+1) x+C-D \\
& \left\{\begin{array}{l}
C+D=2 \\
C-D=0
\end{array} \Rightarrow 2 C=2 \Rightarrow C=1 \Rightarrow D=1 .\right.
\end{aligned}
$$

(c) Notice that $x^{2}-x-6=(x-3)(x-2)$. Clear the denominators by multiplying both sides by $(x-3)(x+2)$ to get

$$
\begin{aligned}
& 2 x^{2}+x+9=2 x^{2}-2 x-12+E x+2 E+F x-3 F \\
& 3 x+21=(E+F) x+2 E-3 F \\
& \left\{\begin{array} { l }
{ E + F = 3 } \\
{ 2 E - 3 F = 2 1 }
\end{array} \Rightarrow \left\{\begin{array}{l}
F=3-E \\
2 E-3(3-E)=21
\end{array} \Rightarrow 5 E-9=21 \Rightarrow E=6 \Rightarrow F=-3\right.\right.
\end{aligned}
$$

2. Let the difference between consecutive terms be d. Then, the fourth term is $7+3 d$ and the fifth term is $7+4 d$. So, $(7+3 d)+(7+4 d)=42 \Rightarrow 14+7 d=42 \Rightarrow d=4$. Therefore, the sixth term is $7+5 d=27$.
3. We will use the sum of an arithmetic sequence formula, $S_{k}=\frac{k}{2}\left(a_{1}+a_{k}\right)$, where S_{k} is the sum of the first k terms, a_{1} is the first term and a_{k} is the $k^{\text {th }}$ term. The total number of miles Ana walks on the $k^{\text {th }}$ day is $\frac{k}{2}(0.5+0.5(k+1))=\frac{k}{2}(0.5 k+1)=\frac{0.5 k^{2}+k}{2}$. Thus, we want to find the smallest positive integer that satisfies the inequality $\frac{0.5 k^{2}+k}{2} \geq 100 \Rightarrow$ $k^{2}+2 k \geq 400 . k=20$ clearly works and $k=19$ does not, since $19^{2}+2 \cdot 19=399<400$.
4. Let the first term of the sequence be a and the common ratio be r. Then $a r$ is the second term and $a r^{3}$ is the fourth term, so $a r=18$ and $a r^{3}=\frac{81}{2}$. Solving for r yields $r^{2}=\frac{9}{4} \Rightarrow r= \pm \frac{3}{2}$. This means that there are two possible answers to the problem. Solving ar $=18$ for a, we see that a can be 12 or -12 depending on the sign of r. It follows that the sum of the first three terms is

$$
a+a r+a r^{2}=12+18+27=57
$$

or

$$
a+a r+a r^{2}=-12+18-27=-21 .
$$

5. (a) Let d be the common difference. Then, $a_{2}=a_{1}+d=7$ and $a_{7}=a_{1}+6 d=22$. We can find a_{1} and d, find the first six terms and then find their sum. We first solve the system
by elimination. We can subtract the first equation from the second equation:

$$
\left\{\begin{array}{l}
a_{1}+d=7 \\
a_{1}+6 d=22
\end{array} \Rightarrow 5 d=15 \Rightarrow d=3 \Rightarrow a_{1}=7-d=4\right.
$$

Thus, the first six terms are $4,7,10,13,16,19$, which have a sum of 69 . Note that the sum of the first six terms can also be calculated by using the formula $\frac{n}{2}\left(2 a_{1}+(n-1) d\right)$, where n is the number of terms.
(b) The first four terms of this sequence are $5,15,45,135$. These have a sum of 200 . Note that this can also be calculated using the formula $a_{1}\left(\frac{1-r^{n}}{1-r}\right)$, where n is the number of terms.
(c) Note that this is a geometric series with the first term 20 and the common ratio $\frac{2}{3}$. The sum of an infinite geometric series with first term a_{1} and common ratio r is $\frac{a_{1}}{1-r}$, so the sum of the series in the problem is $\frac{20}{1-\frac{2}{3}}=60$.
6. The price of bread each day can be modeled using a geometric sequence with $a_{1}=5$ and common ratio $r=1.1$. The sum of a geometric series with first term a_{1}, common ratio r, and number of terms n is $a_{1}\left(\frac{1-r^{n}}{1-r}\right)$. Thus, we need to find the least positive integer n satisfying the inequality

$$
\begin{aligned}
a_{1}\left(\frac{1-r^{n}}{1-r}\right) & \geq 100 \\
5\left(\frac{1-(1.1)^{n}}{1-1.1}\right) & \geq 100 \\
1-1.1^{n} & \leq-2 \\
1.1^{n} & \geq 3 \\
n & \geq \log _{1.1} 3 \approx 11.5 .
\end{aligned}
$$

It will take 12 days for Alex to spend more than $\$ 100$.
7. (a) Recall the conversion formulas $r^{2}=x^{2}+y^{2}, \tan \theta=\frac{y}{x}$. Note that $r=\sqrt{(\sqrt{2})^{2}+(\sqrt{2})^{2}}=$
$\sqrt{4}=2$. Also $\tan \theta=1$ and the point $(\sqrt{2}, \sqrt{2})$ is in the first quadrant, so θ is also in the first quadrant. Therefore, $\theta=\tan ^{-1}(1)=\frac{\pi}{4}$. Therefore, $(\sqrt{2}, \sqrt{2})=\left(2, \frac{\pi}{4}\right)$. Notice that there are many other ways to represent $(\sqrt{2}, \sqrt{2})$ using polar coordinates, such as $\left(-2, \frac{5 \pi}{4}\right)$ and $\left(2, \frac{9 \pi}{4}\right)$. A point can be represented uniquely in polar form if $r>0$ and $0 \leq \theta<2 \pi$ and the origin is represented by $(0,0)$.
(b) The conversion formulas yield $r=\sqrt{(-500)^{2}+(500 \sqrt{3})^{2}}=\sqrt{4 \cdot 500^{2}}=1000$. Next, we note that $\tan \theta=-\sqrt{3}$, and since θ is in the second quadrant, $\theta=\pi+\tan ^{-1}(-\sqrt{3})=$ $\frac{2 \pi}{3}$. Therefore, $(-500,500 \sqrt{3})=\left(1000, \frac{2 \pi}{3}\right)$.
(c) The conversion formulas yield $r=\sqrt{\left(\frac{17 \sqrt{3}}{2}\right)^{2}+\left(-\frac{17}{2}\right)^{2}}=17$. Next, we note that $\tan \theta=-\frac{\sqrt{3}}{3}$ and since θ is in the fourth quadrant, $\theta=\tan ^{-1}\left(-\frac{\sqrt{3}}{3}\right)=-\frac{\pi}{6}=\frac{11 \pi}{6}$. Therefore, $\left(\frac{17 \sqrt{3}}{2},-\frac{17}{2}\right)=\left(17, \frac{11 \pi}{6}\right)$.
8. (a) We use the conversion formulas $x=r \cos \theta, y=r \sin \theta$. Thus $x=5 \cos 120^{\circ}=-\frac{5}{2}$ and $y=5 \sin 120^{\circ}=\frac{5 \sqrt{3}}{2}$, so $\left(5,120^{\circ}\right)=\left(-\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right)$.
(b) Conversion formulas yield $x=3 \sqrt{2} \cos \frac{\pi}{4}=3$ and $y=3 \sqrt{2} \sin \frac{\pi}{4}=3$. It follows that $\left(3 \sqrt{2}, \frac{\pi}{4}\right)=(3,3)$.
(c) Conversion formulas yield $x=6 \cos \frac{4 \pi}{3}=-3$ and $y=6 \sin \frac{4 \pi}{3}=-3 \sqrt{3}$, so $\left(6, \frac{4 \pi}{3}\right)=$ $(-3,-3 \sqrt{3})$.
9. We use the conversion formulas $x=r \cos \theta$ and $y=r \sin \theta$. Substitution yields

$$
(r \cos \theta-1)^{2}+(r \sin \theta-3)^{2}=4 \Rightarrow r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)-2 r \cos \theta+1-6 r \sin \theta+9=4
$$

Using the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$, we can further simplify for a final answer of $r^{2}-2 r \cos \theta-6 r \sin \theta+6=0$.
10. Note that $x^{2}+y^{2}=r^{2}$. Using this in conjunction with the fact that $x=r \cos \theta$ and $y=$
$r \sin \theta$, we obtain

$$
x^{2}+y^{2}+4 x+6 y-3=0 \Rightarrow(x+2)^{2}+(y+3)^{2}=16
$$

11. (a) Solving for y, we get that $y=-2 x+4$. Thus, $4 x+2 y=8$ is equivalent to $x=t, y=-2 t+4$. We could have also solved for x to get that $x=\frac{4-y}{2}$, so another parametrization is $x=\frac{4-t}{2}, y=t$. There are many other parametrizations.
(b) The key to solving this problem is to realize that it is useful to use trigonometric functions when representing circles. Note that $\cos ^{2} t+\sin ^{2} t=1$, so $16 \cos ^{2} t+16 \sin ^{2} t=$ 16. We observe that we can let $(x-5)^{2}$ be equal to $16 \cos ^{2} t$, and similarly $(y+3)^{2}$ be equal to $16 \sin ^{2} t$. Solving for x, we get that $x-5= \pm 4 \cos t \Rightarrow x=5 \pm 4 \cos t$. Solving for y, we get that $y+3= \pm 4 \sin t \Rightarrow y=-3 \pm 4 \sin t$. A possible answer is $x=5+4 \cos t, y=-3+4 \sin t$. We could have chosen the signs differently. For example, $x=5+4 \cos t, y=-3-4 \sin t$ results in the same circle.
(c) We can use trigonometric functions to parametrize an ellipse. Note that $\cos ^{2} t+$ $\sin ^{2} t=1$, so $25 \cos ^{2} t+25 \sin ^{2} t=25$. We observe that we can let $\frac{x^{2}}{4}$ be equal to $25 \cos ^{2} t$, and similarly $\frac{y^{2}}{9}$ be equal to $25 \sin ^{2} t$. Solving for x, we get that $x^{2}=$ $100 \cos ^{2} t \Rightarrow x= \pm 10 \cos t$. Solving for y, we get that $y^{2}=225 \sin ^{2} t \Rightarrow y= \pm 15 \sin t$. It follows that a possible answer is $x=10 \cos t, y=15 \sin t$. Other possible answers include, for example, $x=-10 \cos t, y=15 \sin t$ and $x=10 \cos t, y=-15 \sin t$.
12. The graph is a circle of radius 2 centered at $(0,6)$, which is equivalent to the equation $x^{2}+(y-6)^{2}=4$. Note that $\cos ^{2} t+\sin ^{2} t=1$, so $4 \cos ^{2} t+4 \sin ^{2} t=4$. We observe that we can let x^{2} be equal to $4 \cos ^{2} t$, and similarly $(y-6)^{2}$ be equal to $4 \sin ^{2} t$. Taking square roots in each equation yields $x= \pm 2 \cos t, y=6 \pm \sin t$. One possible parametrization is $x=2 \cos t, y=6+2 \sin t$.
13. Note that the unit circle can be parametrized by $x=\cos t, y=\sin t$ and if t is measured in seconds, a particle with coordinates $(\cos t, \sin t)$ will travel around the circle counterclock-
wise and complete one full rotation after 2π seconds - the particle is at $(1,0)$ at $t=0$ and the next time it will be at $(1,0)$ when $t=2 \pi$. A parametrization for a particle traversing a circle with radius 2 in 2π seconds would then be $(2 \cos t, 2 \sin t)$. If we wish to change the period to 10 , the parametrization would be $\left(2 \cos \left(\frac{2 \pi}{10} t\right), 2 \sin \left(\frac{2 \pi}{10} t\right)\right)$. If we now wish to change the center of the circle from $(0,0)$ to $(3,4)$, the new parametrization would be $x=3+2 \cos \left(\frac{t \pi}{5}\right), y=4+2 \sin \left(\frac{t \pi}{5}\right)$. Note that at $t=0$ the particle is at $(5,4)$, which is precisely the condition in the problem, so we don't need to introduce a phase shift.
14. (a) $-\vec{x}+4 \vec{y}=\langle-5,3\rangle+\langle 24,40\rangle=\langle-5+24,3+40\rangle=\langle 19,43\rangle$.
(b) $2 \vec{x}-(\vec{y}+\langle 2,7\rangle)=\langle 10,-6\rangle-\langle 6,10\rangle-\langle 2,7\rangle=\langle 2,-23\rangle$.
(c) $\langle 5,-3\rangle \cdot\langle 6,10\rangle=5 \cdot 6+(-3) \cdot 10=0$. Note that this also shows that \vec{x} and \vec{y} are perpendicular.
(d) If the desired vector is parallel to $\langle 5,-3\rangle$ then it can be expressed as $\langle 5 k,-3 k\rangle$. Since its magnitude is $8, \sqrt{(5 k)^{2}+(-3 k)^{2}}=8$, or $34 k^{2}=64$, so $k= \pm \sqrt{\frac{64}{34}}= \pm \frac{4 \sqrt{34}}{17}$. Therefore, the vector is $\pm\left\langle\frac{20 \sqrt{34}}{17},-\frac{12 \sqrt{34}}{17}\right\rangle$.
15. To calculate the resultant force, we need to add the two force vectors. We can express each vector as a sum of its horizontal and vertical components, which will make the addition more straightforward. Note that if a vector has magnitude r and forms angle θ with the positive x-axis, measured counterclockwise, then $\vec{v}=\langle r \cos \theta, r \sin \theta\rangle$. This is similar to converting from rectangular to polar coordinates.

The force of 100 N makes a 30° angle with the positive x-axis, so expressed as a vector, it is equal to $\left\langle 100 \cos 30^{\circ}, 100 \sin 30^{\circ}\right\rangle=\langle 50 \sqrt{3}, 50\rangle$. The other force of 150 N can be represented as $\left\langle 150 \cos 150^{\circ}, 150 \sin 150^{\circ}\right\rangle=\langle-75 \sqrt{3}, 75\rangle$. Since the vectors sum to

$$
\langle 50 \sqrt{3}, 50\rangle+\langle-75 \sqrt{3}, 75\rangle=\langle-25 \sqrt{3}, 125\rangle
$$

the magnitude of the resultant force is $\sqrt{(-25 \sqrt{3})^{2}+125^{2}}=50 \sqrt{7}$.

