Geometry Solutions

1. (a) The volume of a cube with side length s is s^{3}. The volume of a rectangular prism with width w, length ℓ, and height h is $w \ell h$. Therefore,

$$
(2 \text { in })^{3}=(3 \text { in }) \cdot(1 \mathrm{in}) \cdot h \Rightarrow h=\frac{8}{3} \text { in } .
$$

(b) The volume of a cone with radius r and height h is $\frac{\pi r^{2} h}{3}$. The diameter of Jason's cone is 6 inches, so its radius is 3 inches. Thus, the volume of his cone is $\frac{\pi \cdot(3 \mathrm{in})^{2} \cdot(2 \mathrm{in})}{3}=$ $6 \pi \mathrm{in}^{3}$.

The volume of a cylinder with radius r and height h is $\pi r^{2} h$. Thus, the volume of Jason's cylinder is $\pi\left(\frac{3}{2} \mathrm{in}\right)^{2} \cdot(10 \mathrm{in})=\frac{45 \pi}{2} \mathrm{in}^{3}$. As a result, Jason will need $\frac{45 \pi}{2}-$ $6 \pi=\frac{33 \pi}{2} \mathrm{in}^{3}$ more water.
(c) From the statement of the problem it follows that the volume of the sphere is equal to the volume of the pyramid. The volume of a sphere with radius r is $\frac{4 \pi r^{3}}{3}$. The volume of the sphere is $\frac{4 \pi(1 \mathrm{ft})^{3}}{3}=\frac{4 \pi}{3} \mathrm{ft}^{3}$.
The volume of the square base pyramid with side length s and height h is $\frac{s^{2} h}{3}$. (In general, the volume of a pyramid with base area B and height h is $\frac{1}{3} B h$.) Therefore, the volume of Bart's pyramid is $\frac{(2 \mathrm{ft})^{2} h}{3}=\frac{4 h}{3} \mathrm{ft}^{2}$. Thus, we have that

$$
\frac{4 \pi}{3}=\frac{4 h}{3} \Rightarrow h=\pi \mathrm{ft} .
$$

2. a) By the Pythagorean Theorem,

$$
\begin{aligned}
12^{2}+(2 x-1)^{2} & =(2 x+1)^{2} \\
144+4 x^{2}-4 x+1 & =4 x^{2}+4 x+1 \\
144 & =8 x \\
18 & =x .
\end{aligned}
$$

The missing sides are $2 x-1=35$ and $2 x+1=37$.
b) By the Pythagorean Theorem,

$$
\begin{aligned}
x^{2}+(2 x-1)^{2} & =17^{2} \\
x^{2}+4 x^{2}-4 x+1 & =289 \\
5 x^{2}-4 x-288 & =0 \\
(5 x+36)(x-8) & =0 \\
x & =-\frac{36}{5}, 8
\end{aligned}
$$

Since length cannot be negative, the only possible value of x is 8 . The side lengths are $x=8$ and $2 x-1=15$.
3. Using the distance formula and squaring both sides after the first step,

$$
\begin{aligned}
\sqrt{(12-a)^{2}+(a-5)^{2}} & =\sqrt{(8-3)^{2}+(16-4)^{2}} \\
(12-a)^{2}+(a-5)^{2} & =5^{2}+12^{2} \\
144-24 a+a^{2}+a^{2}-10 a+25 & =169 \\
2 a^{2}-34 a+169 & =169 \\
2 a(a-17) & =0 \\
a & =0,17
\end{aligned}
$$

Therefore, the sum of all possible values of a is 17 .
4. If a point with coordinates (a, b) is 1 away from $(0,1)$, the distance formula yields

$$
\sqrt{a^{2}+(b-1)^{2}}=1 \Rightarrow a^{2}+(b-1)^{2}=1
$$

If (a, b) also lies on the unit circle, then $a^{2}+b^{2}=1$. We thus have a system of equations that we can solve by subtraction method:

$$
\left\{\begin{array}{l}
a^{2}+b^{2}=1 \\
a^{2}+(b-1)^{2}=1
\end{array} \Rightarrow b^{2}-(b-1)^{2}=0 \Rightarrow b^{2}-b^{2}+2 b-1=0 \Rightarrow 2 b=1 \Rightarrow b=\frac{1}{2}\right.
$$

We now substitute $b=\frac{1}{2}$ into the first equation to solve for a :

$$
a^{2}+\left(\frac{1}{2}\right)^{2}=1 \Rightarrow a^{2}=\frac{3}{4} \Rightarrow a= \pm \frac{\sqrt{3}}{2}
$$

The possible points are $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right),\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.
5. (a) The surface area of a cube with side length s is $6 s^{2}$. The surface area of a rectangular prism with width w, length ℓ, and height h is $2(w \ell+h \ell+w h)$. Therefore,

$$
\begin{aligned}
6(3 \mathrm{~cm})^{2} & =2((1 \mathrm{~cm}) \cdot \ell+(7 \mathrm{~cm}) \cdot \ell+(1 \mathrm{~cm}) \cdot(7 \mathrm{~cm})) \\
54 \mathrm{~cm}^{2} & =2\left(7 \mathrm{~cm}^{2}+(8 \mathrm{~cm}) \ell\right) \\
20 \mathrm{~cm}^{2} & =(8 \mathrm{~cm}) \ell \\
\ell & =\frac{5}{2} \mathrm{~cm}
\end{aligned}
$$

(b) The surface area of a cylinder with radius r and height h is $2 \pi r h+2 \pi r^{2}$. Since Doug's cylinder has diameter 2 feet, it has radius 1 foot. Thus, the surface area of Doug's cylinder is $2 \pi(1 \mathrm{ft})(7 \mathrm{ft})+2 \pi(1 \mathrm{ft})^{2}=16 \pi \mathrm{ft}^{2}$.

The surface area of a sphere with radius r is $4 \pi r^{2}$. Doug's sphere has surface area
$4 \pi(5 \mathrm{ft})^{2}=100 \pi \mathrm{ft}^{2}$. Therefore, Doug will need $100 \pi \mathrm{ft}^{2}-16 \pi \mathrm{ft}^{2}=84 \pi \mathrm{ft}^{2}$. Since Doug needs 1 oz of paint to cover each additional square foot, he will need a total of $84 \pi \mathrm{oz}$ of additional paint.
(c) The volume of a cone with radius r and height h is $\frac{\pi r^{2} h}{3}$. Since the diameter of the cone is 8 mm , its radius is 4 mm . Thus, its volume is $\frac{\pi(4 \mathrm{~mm})^{2}(5 \mathrm{~mm})}{3}=\frac{80 \pi}{3} \mathrm{~mm}^{3}$. The surface area of a cylinder with height h and radius r is $2 \pi r h+2 \pi r^{2}$. The surface area of the cylinder in the problem is $2 \pi(3 \mathrm{~mm})(h)+2 \pi(3 \mathrm{~mm})^{2}=6 \pi h \mathrm{~mm}+$ $18 \pi \mathrm{~mm}^{2}$. Therefore,

$$
\frac{80 \pi}{3}=6 \pi h+18 \pi \Rightarrow \frac{26 \pi}{3}=6 \pi h \Rightarrow h=\frac{13}{9} \mathrm{~mm}
$$

6. (a) The area of a circle with radius r is πr^{2}, so the area of the unit circle is $\pi(1)^{2}=\pi$. The area of an equilateral triangle with side length s is $\frac{s^{2} \sqrt{3}}{4}$. Thus,

$$
\frac{s^{2} \sqrt{3}}{4}=\pi \Rightarrow s^{2}=\frac{4 \pi}{\sqrt{3}}=\frac{4 \pi \sqrt{3}}{3} \text { square units }
$$

(b) By the Pythagorean Theorem, the hypotenuse of this right isosceles triangle is $\sqrt{2^{2}+2^{2}}=$ $2 \sqrt{2}$. Therefore, its perimeter is $2+2+2 \sqrt{2}=4+\sqrt{2}$. The perimeter of an equilateral triangle with side s is $3 s$. Since the perimeters of the two triangles are equal,

$$
3 s=4+2 \sqrt{2} \Rightarrow s=\frac{4+2 \sqrt{2}}{3}
$$

The area of an equilateral triangle with side length s is $\frac{s^{2} \sqrt{3}}{4}$, so the area of the equilateral triangle with side length $s=\frac{4+2 \sqrt{2}}{3}$ is

$$
\frac{\left(\frac{4+2 \sqrt{2}}{3}\right)^{2} \sqrt{3}}{4}=\frac{\frac{16+16 \sqrt{2}+8}{9} \sqrt{3}}{4}=\frac{24 \sqrt{3}+16 \sqrt{6}}{36} \text { square units }
$$

(c) The circumference of a circle with radius r is $2 \pi r$, so the circumference of a circle with
radius 3 is $2 \pi(3)=6 \pi$. Let the length of a leg of this right isosceles triangle be s. By the Pythagorean Theorem, the length of the hypotenuse is then $\sqrt{s^{2}+s^{2}}=s \sqrt{2}$. Setting the perimeter of the triangle equal to the circumference of the circle yields

$$
\begin{aligned}
2 s+s \sqrt{2} & =6 \pi \\
s(2+\sqrt{2}) & =6 \pi \\
s & =\frac{6 \pi}{2+\sqrt{2}} \text { units. }
\end{aligned}
$$

The area of a triangle with base b and height h is $\frac{1}{2} b h$. The isosceles right triangle has base s and height s, so its area is $\frac{1}{2} \cdot s \cdot s$, or

$$
\frac{1}{2}\left(\frac{6 \pi}{2+\sqrt{2}}\right)^{2}=\frac{1}{2} \cdot \frac{36 \pi^{2}}{6+4 \sqrt{2}}=\frac{9 \pi^{2}}{3+2 \sqrt{2}}=\frac{9 \pi^{2}}{3+2 \sqrt{2}} \cdot \frac{3-\sqrt{2}}{3-\sqrt{2}}=27 \pi^{2}-18 \pi^{2} \sqrt{2} .
$$

Note that in the last step we rationalize the denominator by multiplying the fraction by $\frac{3-2 \sqrt{2}}{3-2 \sqrt{2}}$ and the new denominator is 1 since

$$
(3+2 \sqrt{2})(3-2 \sqrt{2})=3^{2}-(2 \sqrt{2})^{2}=9-8=1
$$

7. (a) The length $A B$ becomes the height of this cylinder, and both sides $B C$ and $A D$ become the radii of this cylinder. The volume of a cylinder with radius r and height h is $\pi r^{2} h$. Since all sides of a square are equal, we have $r=h$, so the volume of our cylinder is

$$
\pi r^{2} h=8 \pi \Rightarrow \pi h^{3}=8 \pi \Rightarrow h=2 \text { units. }
$$

Since the height of the cylinder is equal to $A B$, we must have $A B=2$ units .
(b) The diameter of the smaller circle becomes the radius of the bigger circle. Therefore, the new circle has radius $2 \cdot 2=4$, and area $\pi(4)^{2}=16 \pi$.
(c) The cone has height $A B$ and radius $B C$. The volume of a cone with radius r and height h is $\frac{\pi r^{2} h}{3}=\frac{\pi(A B)^{2}(B C)}{3}=12 \pi \mathrm{in}^{3}$.
8. a) Since $D E \| B C, \angle A B C \cong \angle A D E$ and $\angle A C B \cong \angle A E D$ by the Corresponding Angles Theorem, so $\triangle A B C \sim \triangle A D E$ by Angle-Angle similarity. Since corresponding sides of similar triangles are in proportion,

$$
\begin{gathered}
\frac{A E}{A C}=\frac{A D}{A B} \Rightarrow \frac{x+2}{2}=\frac{10}{4} \Rightarrow x+2=5 \Rightarrow x=3 . \\
\frac{D E}{B C}=\frac{A E}{A C} \Rightarrow \frac{y}{8}=\frac{10}{4} \Rightarrow y=20 .
\end{gathered}
$$

b) Since $D E \| B C, \angle A D E \cong \angle A C B$ and $\angle A E D \cong \angle A B C$ by the Alternate Interior Angles Theorem. Therefore, $\triangle A B C \sim \triangle A E D$ by Angle-Angle Similarity. Since corresponding sides of similar triangles are in proportion,

$$
\begin{aligned}
& \frac{D E}{C B}=\frac{A D}{A C} \Rightarrow \frac{a}{4}=\frac{9}{3} \Rightarrow a=12 . \\
& \frac{A B}{A E}=\frac{A C}{A D} \Rightarrow \frac{b}{6}=\frac{3}{9} \Rightarrow b=2 . \\
& \text {, }
\end{aligned}
$$

9. We can simplify the calculation by considering a smaller right triangle similar to the original one. A convenient similar triangle has legs 4 and $\frac{d}{500}$ and a hypotenuse of 7. Essentially, we have scaled down the triangle by a factor of 500. By the Pythagorean Theorem, we see that

$$
\frac{d}{500}=\sqrt{7^{2}-4^{2}}=\sqrt{33} \Rightarrow \frac{d}{3500}=\frac{\sqrt{33}}{7}
$$

10. Let $A B=x$. Then $B C=2 x$ since $A B: B C=1: 2$. Since $A B: B E=2: 3$, we also have that $B E=\frac{3 x}{2}$. The ratio of the areas of the rectangles is

$$
\frac{A B \cdot B C}{A B \cdot B E}=\frac{B C}{B E}=\frac{2 x}{\frac{3 x}{2}}=\frac{4}{3}
$$

11. In a circle with radius r, the length of the arc subtended by a central angle equal to θ degrees is $\frac{\theta}{360^{\circ}} \cdot 2 \pi r$ and the area of the sector subtended by θ is $\frac{\theta}{360^{\circ}} \cdot \pi r^{2}$. Applying these formulas in the diagram below yields:

$$
\begin{aligned}
& \text { Arc Length }=\frac{60^{\circ}}{360^{\circ}} \cdot 2 \pi(2 \mathrm{~cm})=\frac{2 \pi}{3} \mathrm{~cm} \\
& \text { Sector Area }=\frac{60^{\circ}}{360^{\circ}} \cdot \pi(2 \mathrm{~cm})^{2}=\frac{2 \pi}{3} \mathrm{~cm}^{2}
\end{aligned}
$$

12. The segment connecting a center of the circle to the point of tangency is perpendicular to the tangent line. This segment contains the points $(0,0)$ and $(3,4)$, so the slope of the radius perpendicular to the tangent line is $\frac{4}{3}$. The slope of the tangent line is the negative reciprocal of $\frac{4}{3}$, which is $-\frac{3}{4}$. We now use point-slope equation of a line to find the equation of the tangent line through $(3,4)$:

$$
\begin{aligned}
& y-4=-\frac{3}{4}(x-3) \\
& 4 y-16=-3 x+9 \\
& 3 x+4 y=25
\end{aligned}
$$

13. We wish to solve the system

$$
\left\{\begin{array}{l}
(x-2)^{2}+(y-1)^{2}=4 \\
x^{2}+(y-1)^{2}=9
\end{array}\right.
$$

We may subtract the first equation from the second equation to cancel $(y-1)^{2}$. We then can solve the resulting equation for x :

$$
\begin{aligned}
& x^{2}-(x-2)^{2}=5 \\
& x^{2}-\left(x^{2}-4 x+4\right)=5 \\
& 4 x-4=5 \\
& x=\frac{9}{4} .
\end{aligned}
$$

Substituting $x=\frac{9}{4}$ into the second equation, we can solve for y :

$$
\left(\frac{9}{4}\right)^{2}+(y-1)^{2}=9 \Rightarrow(y-1)^{2}=\frac{63}{16} \Rightarrow y-1= \pm \sqrt{\frac{63}{16}} \Rightarrow y=1 \pm \frac{3 \sqrt{7}}{4}
$$

which yields the two points $\left(\frac{9}{4}, 1+\frac{3 \sqrt{7}}{4}\right),\left(\frac{9}{4}, 1-\frac{3 \sqrt{7}}{4}\right)$.
14. The surface area of the box with edge length s would be $5 s^{2}$ because the box with an open top has only 5 faces. Therefore,

$$
5 s^{2}=150 \mathrm{in}^{2} \Rightarrow s^{2}=30 \mathrm{in}^{2} \Rightarrow s=\sqrt{30} \mathrm{in} \Rightarrow s^{3}=30 \sqrt{30} \mathrm{in}^{3} .
$$

15. (a) Let the length of this rectangle be ℓ, and the width be w. We are given that $w \ell=3 \mathrm{in}^{2}$. Therefore, if we double the length and triple the width, the area becomes

$$
(2 \ell)(3 w)=6(w \ell)=6\left(3 \mathrm{in}^{2}\right)=18 \mathrm{in}^{2} .
$$

(b) Let the radius of circle B be r_{B}. Let the radius of circle A be r_{A}. We are given that the area of circle B is 100 times the area of circle A, so $\pi r_{B}^{2}=100 \pi r_{A}^{2}$. Dividing both sides by 100 and taking square roots of both sides yields

$$
\pi r_{B}^{2}=100 \pi r_{A}^{2} \Rightarrow r_{B}^{2}=100 r_{A}^{2} \Rightarrow r_{B}=10 r_{A} \Rightarrow \frac{r_{B}}{r_{A}}=10 .
$$

