
Functions Solutions

1. In a function for each input value (x-value), there is only one output value (y- value). We

can check whether a graph represents a function by performing the vertical line test. If

every vertical line intersects the graph in at most one point, then the graph represents a

function. If some vertical line intersects the graph in more than one point, then the graph

does not represent a function.

a) This is a graph of a circle, and it does not pass the vertical line test. Therefore, it is

not a function .

b) This is a graph of a line, and it passes the vertical line test. Therefore, it is a function

c) This graph passes the vertical line test. Therefore, it is a function .

d) This graph passes the vertical line test. Therefore, it is a function .

2. (a) For this function to be defined, the expression inside the square root must be non-

negative, as otherwise, the square root would return a complex number. Thus, we

have that x − 3 ≥ 0 ⇒ x ≥ 3. The domain is then [3, ∞) .

(b) g(x) is only undefined when the denominator is equal to 0. Therefore, we must solve

the equation

x2 − 9 = 0

(x − 3)(x + 3) = 0

x = 3,−3.

Therefore the domain of g(x) contains all real numbers except −3 and 3 and in interval

notation it is (−∞,−3) ∪ (−3, 3) ∪ (3, ∞) .

(c) We first notice that the expression inside the square root must be non-negative. Thus,

we have that (x − 9) ≥ 0 ⇒ x ≥ 9. However, we also must exclude the values that

make the denominator zero, namely
√

x − 9 = 1 ⇒ x ̸= 10. Therefore, the domain of

h(x) is [9, 10) ∪ (10, ∞) .
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3. We can find the range of each function by considering the set of all possible outputs and

the shape of the graph of the function.

(a) Since (x − 1)2 takes on all values greater than or equal to 0, −(x − 1)2 + 4 takes on all

values less than or equal to 4. Hence, the range of f (x) = −(x − 1)2 + 4 is (−∞, 4] .

(b) Since
√

x + 1 takes on all values greater than or equal to 0,
√

x + 1 + 3 takes on all

values greater than or equal to 3. Hence, the range of f (x) =
√

x + 1 + 3 is [3, ∞) .

(c) Since |x + 5| takes on all values greater than or equal to 0, 3|x + 5| + 2 takes on all

values greater than or equal to 2. Hence, the range of f (x) = 3|x + 5|+ 2 is [2, ∞) .

4. We first note that g(−3) is (−3)2 = 9, so we want to find f−1(9). That is, we want to find

the value x such that f (x) = 9. This is equivalent to solving the equation

−3x − 10 = 9

−3x = 19

x = −19
3

.

Thus, f−1(9) = −19
3

. Note that we didn’t have to find f−1(x), although we could do it.

5. We first evaluate f (3). Since f (x) = 3x − 7 for x ≥ 3,

f (3) = 3(3)− 7 = 2.

We obtain that f ( f (3)) = f (2). Since f (x) = x2 − 5 for x < 3,

f (2) = 22 − 5 = −1 .
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6. k(x) is a piece-wise function, so we need to sketch each section of k(x) separately:

7. (a) To determine the end behavior of f (x), we examine the leading term (term with the

greatest degree). In this case, the term is −x3. As x approaches ∞, −x3 approaches

−∞. As x approaches −∞, −x3 approaches ∞. Therefore, as x approaches ∞, f (x)

approaches −∞. As x approaches −∞, f (x) approaches ∞.

(b) The leading term is x4. Because the exponent is even, x4 will approach ∞ when x

approaches either ∞ or −∞. That is, as x approaches ∞, f (x) approaches ∞ and as x

approaches −∞, f (x) approaches ∞.

(c) The leading term is −x8. Because the exponent is even, −x8 will approach −∞ when

x approaches either ∞ or −∞. That is, as x approaches ∞, f (x) approaches −∞ and as

x approaches −∞, f (x) approaches −∞.

(d) The leading term is x5. As x approaches ∞, x5 approaches ∞. As x approaches −∞, x5

approaches −∞. Therefore, as x approaches ∞, f (x) approaches ∞. As x approaches

−∞, f (x) approaches −∞.
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8. Note that f (x) is only negative when (x − 5)2 < 4. We now solve for x the inequality

(x − 5)2 < 4

− 2 < x − 5 < 2

3 < x < 7.

Therefore, the interval in which f (x) is negative is (3, 7) .

9. Note that we can factor f (x) using difference of squares to obtain (x − 1)(x − 2)(x + 2).

Since f (x) changes sign only at x = −2, 1, 2, we can create a sign chart to analyze the sign

of f (x) between those values. We can select a test value from each interval to determine

the sign of f (x) in that interval. For example, f (0) = 4 > 0, so f (x) must be positive in the

interval (−2, 1).

−2

−

1

+

2

− +

From the sign chart, it is clear that f (x) is positive only on (−2, 1) ∪ (2,+∞) .

10. (a) The point-slope form of the line must be y − 7 = 5(x − 3) .

(b) Since a perpendicular line has slope
1
2

, we know that the line that we are looking for

has slope −2. Since it passes through (0, 2), it must have the y-intercept 2. The slope-

intercept form of the line must be y = −2x + 2 .

(c) Since a parallel line has slope −3, the line that we are looking for must also have slope

−3. The point-slope form is, therefore, y − 4 = −3(x − 4)

11. The first line has the slope
9 − 5
4 − 3

= 4. Using the point-slope form, we can solve the equa-
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tion:

y − 5 = 4(x − 3)

y − 5 = 4x − 12

y = 4x − 7.

The equation of the other line can also be found using the point-slope form:

y − 13 =
1
3
(x − 39)

y − 13 =
1
3

x − 13

y =
1
3

x.

To find the intersection of the two lines, we solve

4x − 7 =
1
3

x ⇒ 11x
3

= 7 ⇒ x =
21
11

y =
1
3

(
21
11

)
=

7
11

.

Therefore, the intersection point is
(

21
11

,
7

11

)
.

12. A graph is even if it is symmetric about the y-axis and odd if it is symmetric about the

origin.

(a) This graph is symmetric about the y-axis, but not about the origin, so it is even and

not odd.

(b) This graph is not symmetric about the y-axis nor the origin so it is neither even nor

odd.

(c) This graph is symmetric about the origin, but is not symmetric about the y-axis. There-

fore, it is odd and not even.

(d) This graph is symmetric about the origin, but is not symmetric about the y-axis. There-
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fore, it is odd and not even.

13. To find the inverse function, we switch the input, x, and the output, y, and then solve for y.

(a)
x = 2y + 5

x − 5 = 2y

y =
x − 5

2
.

(b)
x =

√
y + 1

x2 = y + 1

y = x2 − 1 , x ≥ 0.

We need to add the condition x ≥ 0, since in the first line x must be non-negative.

(c)
x =

4y − 7
2y + 1

2xy + x = 4y − 7

2xy − 4y = −x − 7

y(2x − 4) = −x − 7

y =
x + 7

4 − 2x
.

14. We may rewrite the information in the problem as

f−1(3) = 5 ⇒ f (5) = 3

f−1(9) = −7 ⇒ f (−7) = 9.

In other words, the line must pass through the points (5, 3) and (−7, 9). The slope of the
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line is
9 − 3
−7 − 5

=
6

−12
= −1

2
. We now use the point-slope form to solve for y:

y − 3 = −1
2
(x − 5)

y − 3 = −1
2

x +
5
2

y = −1
2

x +
11
2

f (x) = −1
2

x +
11
2

.

15. To find the x-intercepts of a function, we set y to 0 and solve for x. To find the y-intercept

of a function, we set x to 0 and solve for y.

(a) f (x) = x2 − 6x + 9 can be factored as (x − 3)2. First, we find the x-intercepts:

(x − 3)2 = 0

x = 3 .

To find the y-intercepts, we set x to 0 in the original expression, which is f (0) = 9 .

(b) We can factor f (x) using grouping.

(x3 − 5x2)− (4x − 20) = (x2 − 4)(x − 5) = (x + 2)(x − 2)(x − 5).

The x-intercepts are the roots of f (x), which are 2,−2, 5 . The y-intercept is f (0) =

20 .

(c) Note that the coefficients of f (x) form a row of the Pascal’s Triangle. The polynomial

can therefore be factored as (x − 1)4. Solving (x − 1)4 = 0 yields one intercept x = 1 .

The y-intercept is f (0) = 1 .
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