Functions Solutions

1. In a function for each input value (x-value), there is only one output value (y-value). We can check whether a graph represents a function by performing the vertical line test. If every vertical line intersects the graph in at most one point, then the graph represents a function. If some vertical line intersects the graph in more than one point, then the graph does not represent a function.
a) This is a graph of a circle, and it does not pass the vertical line test. Therefore, it is not a function.
b) This is a graph of a line, and it passes the vertical line test. Therefore, it is a function
c) This graph passes the vertical line test. Therefore, it is a function.
d) This graph passes the vertical line test. Therefore, it is a function.
2. (a) For this function to be defined, the expression inside the square root must be nonnegative, as otherwise, the square root would return a complex number. Thus, we have that $x-3 \geq 0 \Rightarrow x \geq 3$. The domain is then $[3, \infty)$.
(b) $g(x)$ is only undefined when the denominator is equal to 0 . Therefore, we must solve the equation

$$
\begin{aligned}
& x^{2}-9=0 \\
& (x-3)(x+3)=0 \\
& x=3,-3
\end{aligned}
$$

Therefore the domain of $g(x)$ contains all real numbers except -3 and 3 and in interval notation it is $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$.
(c) We first notice that the expression inside the square root must be non-negative. Thus, we have that $(x-9) \geq 0 \Rightarrow x \geq 9$. However, we also must exclude the values that make the denominator zero, namely $\sqrt{x-9}=1 \Rightarrow x \neq 10$. Therefore, the domain of $h(x)$ is $[9,10) \cup(10, \infty)$.
3. We can find the range of each function by considering the set of all possible outputs and the shape of the graph of the function.
(a) Since $(x-1)^{2}$ takes on all values greater than or equal to $0,-(x-1)^{2}+4$ takes on all values less than or equal to 4 . Hence, the range of $f(x)=-(x-1)^{2}+4$ is $(-\infty, 4]$.
(b) Since $\sqrt{x+1}$ takes on all values greater than or equal to $0, \sqrt{x+1}+3$ takes on all values greater than or equal to 3 . Hence, the range of $f(x)=\sqrt{x+1}+3$ is $[3, \infty)$.
(c) Since $|x+5|$ takes on all values greater than or equal to $0,3|x+5|+2$ takes on all values greater than or equal to 2 . Hence, the range of $f(x)=3|x+5|+2$ is $[2, \infty)$.
4. We first note that $g(-3)$ is $(-3)^{2}=9$, so we want to find $f^{-1}(9)$. That is, we want to find the value x such that $f(x)=9$. This is equivalent to solving the equation

$$
\begin{aligned}
-3 x-10 & =9 \\
-3 x & =19 \\
x & =-\frac{19}{3} .
\end{aligned}
$$

Thus, $f^{-1}(9)=\boxed{-\frac{19}{3}}$. Note that we didn't have to find $f^{-1}(x)$, although we could do it.
5. We first evaluate $f(3)$. Since $f(x)=3 x-7$ for $x \geq 3$,

$$
f(3)=3(3)-7=2
$$

We obtain that $f(f(3))=f(2)$. Since $f(x)=x^{2}-5$ for $x<3$,

$$
f(2)=2^{2}-5=-1 .
$$

6. $k(x)$ is a piece-wise function, so we need to sketch each section of $k(x)$ separately:

7. (a) To determine the end behavior of $f(x)$, we examine the leading term (term with the greatest degree). In this case, the term is $-x^{3}$. As x approaches $\infty,-x^{3}$ approaches $-\infty$. As x approaches $-\infty,-x^{3}$ approaches ∞. Therefore, as x approaches $\infty, f(x)$ approaches $-\infty$. As x approaches $-\infty, f(x)$ approaches ∞.
(b) The leading term is x^{4}. Because the exponent is even, x^{4} will approach ∞ when x approaches either ∞ or $-\infty$. That is, as x approaches $\infty, f(x)$ approaches ∞ and as x approaches $-\infty, f(x)$ approaches ∞.
(c) The leading term is $-x^{8}$. Because the exponent is even, $-x^{8}$ will approach $-\infty$ when x approaches either ∞ or $-\infty$. That is, as x approaches $\infty, f(x)$ approaches $-\infty$ and as x approaches $-\infty, f(x)$ approaches $-\infty$.
(d) The leading term is x^{5}. As x approaches ∞, x^{5} approaches ∞. As x approaches $-\infty, x^{5}$ approaches $-\infty$. Therefore, as x approaches $\infty, f(x)$ approaches ∞. As x approaches $-\infty, f(x)$ approaches $-\infty$.
8. Note that $f(x)$ is only negative when $(x-5)^{2}<4$. We now solve for x the inequality

$$
\begin{aligned}
& (x-5)^{2}<4 \\
& -2<x-5<2 \\
& 3<x<7
\end{aligned}
$$

Therefore, the interval in which $f(x)$ is negative is $(3,7)$.
9. Note that we can factor $f(x)$ using difference of squares to obtain $(x-1)(x-2)(x+2)$. Since $f(x)$ changes sign only at $x=-2,1,2$, we can create a sign chart to analyze the sign of $f(x)$ between those values. We can select a test value from each interval to determine the sign of $f(x)$ in that interval. For example, $f(0)=4>0$, so $f(x)$ must be positive in the interval $(-2,1)$.

From the sign chart, it is clear that $f(x)$ is positive only on $(-2,1) \cup(2,+\infty)$.
10. (a) The point-slope form of the line must be $y-7=5(x-3)$.
(b) Since a perpendicular line has slope $\frac{1}{2}$, we know that the line that we are looking for has slope -2 . Since it passes through $(0,2)$, it must have the y-intercept 2 . The slopeintercept form of the line must be $y=-2 x+2$.
(c) Since a parallel line has slope -3 , the line that we are looking for must also have slope -3 . The point-slope form is, therefore, $y-4=-3(x-4)$
11. The first line has the slope $\frac{9-5}{4-3}=4$. Using the point-slope form, we can solve the equa-
tion:

$$
\begin{aligned}
& y-5=4(x-3) \\
& y-5=4 x-12 \\
& y=4 x-7
\end{aligned}
$$

The equation of the other line can also be found using the point-slope form:

$$
\begin{aligned}
& y-13=\frac{1}{3}(x-39) \\
& y-13=\frac{1}{3} x-13 \\
& y=\frac{1}{3} x
\end{aligned}
$$

To find the intersection of the two lines, we solve

$$
\begin{aligned}
4 x-7=\frac{1}{3} x \Rightarrow \frac{11 x}{3}=7 \Rightarrow x & =\frac{21}{11} \\
y & =\frac{1}{3}\left(\frac{21}{11}\right)=\frac{7}{11} .
\end{aligned}
$$

Therefore, the intersection point is $\left(\frac{21}{11}, \frac{7}{11}\right)$.
12. A graph is even if it is symmetric about the y-axis and odd if it is symmetric about the origin.
(a) This graph is symmetric about the y-axis, but not about the origin, so it is even and not odd.
(b) This graph is not symmetric about the y-axis nor the origin so it is neither even nor odd.
(c) This graph is symmetric about the origin, but is not symmetric about the y-axis. Therefore, it is odd and not even.
(d) This graph is symmetric about the origin, but is not symmetric about the y-axis. There-
fore, it is odd and not even.
13. To find the inverse function, we switch the input, x, and the output, y, and then solve for y.
(a)

$$
\begin{aligned}
& x=2 y+5 \\
& x-5=2 y \\
& y=\frac{x-5}{2} .
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x=\sqrt{y+1} \\
& x^{2}=y+1 \\
& y=x^{2}-1, x \geq 0
\end{aligned}
$$

We need to add the condition $x \geq 0$, since in the first line x must be non-negative.
(c)

$$
\begin{aligned}
& x=\frac{4 y-7}{2 y+1} \\
& 2 x y+x=4 y-7 \\
& 2 x y-4 y=-x-7 \\
& y(2 x-4)=-x-7 \\
& y=\frac{x+7}{4-2 x} .
\end{aligned}
$$

14. We may rewrite the information in the problem as

$$
\begin{array}{r}
f^{-1}(3)=5 \Rightarrow f(5)=3 \\
f^{-1}(9)=-7 \Rightarrow f(-7)=9
\end{array}
$$

In other words, the line must pass through the points $(5,3)$ and $(-7,9)$. The slope of the
line is $\frac{9-3}{-7-5}=\frac{6}{-12}=-\frac{1}{2}$. We now use the point-slope form to solve for y :

$$
\begin{aligned}
& y-3=-\frac{1}{2}(x-5) \\
& y-3=-\frac{1}{2} x+\frac{5}{2} \\
& y=-\frac{1}{2} x+\frac{11}{2} \\
& f(x)=-\frac{1}{2} x+\frac{11}{2}
\end{aligned}
$$

15. To find the x-intercepts of a function, we set y to 0 and solve for x. To find the y-intercept of a function, we set x to 0 and solve for y.
(a) $f(x)=x^{2}-6 x+9$ can be factored as $(x-3)^{2}$. First, we find the x-intercepts:

$$
\begin{aligned}
& (x-3)^{2}=0 \\
& x=3 .
\end{aligned}
$$

To find the y-intercepts, we set x to 0 in the original expression, which is $f(0)=9$.
(b) We can factor $f(x)$ using grouping.

$$
\left(x^{3}-5 x^{2}\right)-(4 x-20)=\left(x^{2}-4\right)(x-5)=(x+2)(x-2)(x-5) .
$$

The x-intercepts are the roots of $f(x)$, which are $2,-2,5$. The y-intercept is $f(0)=$ 20.
(c) Note that the coefficients of $f(x)$ form a row of the Pascal's Triangle. The polynomial can therefore be factored as $(x-1)^{4}$. Solving $(x-1)^{4}=0$ yields one intercept $x=1$. The y-intercept is $f(0)=1$.

