Exponents and Logarithms Solutions

1. Using the properties of logarithms, we may write

$$
\begin{aligned}
\log \left(\frac{a^{3} b^{4}}{c^{7}}\right) & =\log \left(a^{3} b^{4}\right)-\log \left(c^{7}\right) \\
& =\log \left(a^{3}\right)+\log \left(b^{4}\right)-\log \left(c^{7}\right) \\
& =3 \log a+4 \log b-7 \log c \\
& =3 \cdot 5+4 \cdot 2-7 \cdot 1 \\
& =16
\end{aligned}
$$

2. (a) We use the difference-to-quotient formula $\log _{c} a-\log _{c} b=\log _{c}\left(\frac{a}{b}\right)$:

$$
\log _{2} 80-\log _{2} 5=\log _{2}\left(\frac{80}{5}\right)=\log _{2} 16=4 .
$$

(b) Because a^{x} and $\log _{a} x$ are inverse functions, we know that $a^{\log _{a} b}=b$. Thus

$$
2^{\log _{2} 17}=17
$$

(c) We use the change of base formula $\log _{b} a=\frac{\log _{c} a}{\log _{c} b}$: Therefore,

$$
\log _{2} 5 \cdot \log _{5} 8=\frac{\log 5}{\log 2} \cdot \frac{\log 8}{\log 5}=\frac{\log 8}{\log 2}=\log _{2} 8=3
$$

3. (a) We isolate 7^{x} and then rewrite the expression in logarithmic form:

$$
\begin{aligned}
3 \cdot 7^{x}+1 & =5 \\
3 \cdot 7^{x} & =4 \\
7^{x} & =\frac{4}{3} \\
x & =\log _{7}\left(\frac{4}{3}\right) .
\end{aligned}
$$

(b) Similarly to (a), we isolate e^{x} and rewrite the expression in logarithmic form:

$$
\begin{aligned}
5 e^{x}+1 & =\frac{2 e^{x}+3}{2} \\
10 e^{x}+2 & =2 e^{x}+3 \\
8 e^{x} & =1 \\
e^{x} & =\frac{1}{8} \\
x & =\ln \left(\frac{1}{8}\right) .
\end{aligned}
$$

(c) This equation is a quadratic in 2^{x}, so we may solve it by factoring:

$$
\begin{aligned}
& 4^{x}-3 \cdot 2^{x+1}+5=0 \\
& \left(2^{x}\right)^{2}-6 \cdot 2^{x}+5=0 \\
& \left(2^{x}-5\right)\left(2^{x}-1\right)=0 \\
& 2^{x}=5 \text { or } 2^{x}=1 \\
& x=\log _{2} 5 \text { or } x=0 .
\end{aligned}
$$

4. (a) The change of base formula $\log _{b} a=\frac{\log _{c} a}{\log _{c} b}$ yields

$$
\frac{\log _{2} y}{\log _{2} 5}=3 \Rightarrow \log _{5} y=3 \Rightarrow y=5^{3}=125
$$

(b) The sum-to-product formula $\log _{c} a+\log _{c} b=\log _{c}(a b)$ yields

$$
\begin{aligned}
& \log _{2} y+\log _{2}(y-4)=2 \\
& \log _{2} y(y-4)=\log _{2} 4 \\
& \log _{2}\left(y^{2}-4 y\right)=\log _{2} 4 \\
& y^{2}-4 y=4 \\
& y^{2}-4 y-4=0 \\
& y=\frac{4 \pm \sqrt{16+16}}{2}=2 \pm 2 \sqrt{2}
\end{aligned}
$$

Notice that we solved the quadratic using the Quadratic Formula. However, we are not done yet. Since logarithms are defined only for positive arguments, y and $y-4$ must be positive, meaning $y>4$. Therefore, the only solution to the original equation is $y=2+2 \sqrt{2}$.
(c) Here we have logarithms with different bases, so we must use the change of base formula $\log _{b} a=\frac{\log _{c} a}{\log _{c} b}$:

$$
\log _{4} 19=\frac{\log _{2} 19}{\log _{2} 4}=\frac{1}{2} \log _{2} 19=\log _{2} \sqrt{19}
$$

Therefore,

$$
\log _{2}(3 y)=\log _{2} \sqrt{19} \Rightarrow 3 y=\sqrt{19} \Rightarrow y=\frac{\sqrt{19}}{3}
$$

5. (a) Rewriting both sides of the inequality in exponential form yields

$$
\begin{aligned}
\log _{3}(4 a-7) & \leq 3 \\
4 a-7 & \leq 3^{3} \\
4 a & \leq 34 \\
a & \leq \frac{17}{2} .
\end{aligned}
$$

Because logarithms are defined only for positive arguments, we must have

$$
4 a-7>0 \Rightarrow a>\frac{7}{4}
$$

Combining the two inequalities yields the interval $\frac{7}{4}<a \leq \frac{17}{2}$.
(b) Since both logarithms are to the same base, the inequality must hold for the arguments of the logarithms:

$$
\begin{aligned}
\log _{7}(5 x-4) & \geq \log _{7}(2 x+8) \\
5 x-4 & \geq 2 x+8 \\
x & \geq 4 .
\end{aligned}
$$

However, since logarithms are defined only for positive arguments, we must also have

$$
5 x-4>0 \text { and } 2 x+8>0 \Rightarrow x>\frac{4}{5} \text { and } x>-4
$$

Combining the three inequalities $x \geq 4, x>\frac{4}{5}, x>-4$ results in a single inequality $x \geq 4$
6. To find the y-intercept, set x equal to 0 and solve for y :

$$
y=5 \cdot 3^{0}-15=-10
$$

To find the x-intercepts, set y equal to 0 and solve for x :

$$
0=5 \cdot 3^{2 x}-15 \Rightarrow 5 \cdot 3^{2 x}=15 \Rightarrow 3^{2 x}=3 \Rightarrow 2 x=1 \Rightarrow x=\frac{1}{2}
$$

7. $f(x)$ is defined if $3 x-7>0 \Rightarrow x>\frac{7}{3}$ so the domain of $f(x)$ is $\left(\frac{7}{3}, \infty\right)$. Since the range of any logarithm function is all real numbers, the range of $f(x)$ is $(-\infty, \infty)$.

Another way to find the range of $f(x)$ is to find the domain of its inverse:

$$
\begin{aligned}
& x=\log _{3}(3 y-7) \\
& 3^{x}=3 y-7 \\
& y=\frac{3^{x}+7}{3}
\end{aligned}
$$

It is clear that the domain of $f^{-1}(x)$ is all real numbers, hence, the range of $f(x)$ must be all real numbers.
8. (a) We observe that as x increases, the value of $\log _{5}(2 x+1)$ also increases. Therefore, $h(x)$ is increasing.
(b) We observe that as x increases, the value of $\log _{7}(-2 x+15)$ decreases (because the argument of the logarithm decreases). Therefore, $g(x)$ is decreasing.
(c) Notice that $3^{-x}=\frac{1}{3^{x}}$, meaning that as x increases, the denominator of the fraction increases and the value of the fraction decreases. Therefore, as x increases, $3^{-x}-2$ decreases, so $f(x)$ is decreasing.
9. To find the inverse of $k(x)$, we replace $k(x)$ with x and x with y and solve for y in terms of x :

$$
\begin{aligned}
& x=\frac{1}{e^{y}+1} \\
& e^{y}+1=\frac{1}{x} \\
& e^{y}=\frac{1}{x}-1 \\
& y=\ln \left(\frac{1}{x}-1\right) \\
& k^{-1}(x)=\ln \left(\frac{1}{x}-1\right) .
\end{aligned}
$$

10. To find the inverse of $p(x)$, we replace $p(x)$ with x and x with y and solve for y in terms of
 the equation in exponential form.

$$
\begin{aligned}
& x=\log _{7}(2 y+1)^{5} \\
& x=5 \log _{7}(2 y+1) \\
& \frac{x}{5}=\log _{7}(2 y+1) \\
& 2 y+1=7^{\frac{x}{5}} \\
& y=\frac{7^{\frac{x}{5}}-1}{2} \\
& p^{-1}(x)=\frac{7^{\frac{x}{5}}-1}{2} .
\end{aligned}
$$

11. (a) We graph $y=3^{x}$ by using a table of values to plot several points. To find the graph of $y=3^{x-1}$, we shift the graph of $y=3^{x}$ by 1 unit to the right:

(b) We graph $y=2^{x}$ by using a table of values to plot several points. Then, we obtain the graph of $y=2^{x}-2$ by translating the graph of $y=2^{x}$ by 2 units down:

(c) We graph $y=\log _{2} x$ by using a table of values to plot several points. Then, we obtain the graph of $y=\log _{2}(x+1)-3$ by translating the graph of $y=\log _{2} x$ by 1 unit to the left and 3 units down:

We use the identities $\log _{c} a b=\log _{c} a+\log _{c} b, \log _{c} \frac{a}{b}=\log _{c} a-\log _{c} b$, and $\log _{c} a^{b}=b \log _{c} a$ along with the laws of exponents. Recall that $\sqrt[m]{a^{n}}=a^{n / m}$.
12. (a) $\ln \left(a^{2} b^{3}\right)=\ln a^{2}+\ln b^{3}=2 \ln a+3 \ln b$.
(b) $\log (a b c)^{\frac{5}{2}}=\frac{5}{2} \log a b c=\frac{5}{2}(\log a+\log b+\log c)=\frac{5}{2} \log a+\frac{5}{2} \log b+\frac{5}{2} \log c$.
(c) Notice that $\log 100=\log _{10} 100=2$.

$$
\begin{aligned}
\log \frac{100 \sqrt[3]{a}}{b^{4} \sqrt{c^{5}}} & =\log 100+\log \sqrt[3]{a}-\log b^{4}-\log \sqrt{c^{5}} \\
& =\log 100+\log a^{1 / 3}-\log b^{4}-\log c^{5 / 2} \\
& =2+\frac{1}{3} \log a-4 \log b-\frac{5}{2} \log c
\end{aligned}
$$

13. Because the problem specifies half-life, we know that the model for the problem will be exponential decay. Hence, the amount of caffeine in Manuel's body after t hours can be modeled by the function $P(t)=200 \cdot\left(\frac{1}{2}\right)^{\frac{t}{5}}$. The exponent of $\frac{1}{2}$ is $\frac{t}{5}$ because every 5 hours the total amount of caffeine in the bloodstream is halved, or multiplied by $\frac{1}{2}$. We wish to find the time t when $P(t)=20$, so we solve

$$
\begin{aligned}
P(t) & =20 \\
200 \cdot\left(\frac{1}{2}\right)^{\frac{t}{5}} & =20 \\
\left(\frac{1}{2}\right)^{\frac{t}{5}} & =\frac{1}{10} \\
\frac{t}{5} & =\log _{\frac{1}{2}} \frac{1}{10} \\
t & =5 \log _{\frac{1}{2}} \frac{1}{10} \approx 16.610 \text { hours. }
\end{aligned}
$$

14. The amount of money that James has after t years can be modeled by the exponential equation $P(t)=800,000 \cdot(1.1)^{t}$. This ensures that after every year, the amount of money he has is multiplied by 1.1. In other words, the annual growth factor is 1.1. Setting $P(t)$ equal to $1,000,000$ and rewriting exponential equation in logarithmic form in step 3 , we get:

$$
\begin{aligned}
800,000 \cdot(1.1)^{t} & =1,000,000 \\
(1.1)^{t} & =\frac{5}{4} \\
t & =\log _{1.1} \frac{5}{4} \approx 2.341 \text { years } .
\end{aligned}
$$

15. The population of rabbits after t years can be modeled by the exponential equation $P(t)=$ $1500 \cdot 2^{t}$. Note that the annual growth factor is 2 . We wish to find the time t when $P(t)=$ $1,000,000$, so we solve

$$
\begin{aligned}
P(t) & =1,000,000 \\
1500 \cdot 2^{t} & =1,000,000 \\
2^{t} & =\frac{2000}{3} \\
t & =\log _{2} \frac{2000}{3} \approx 9.381 \text { years. }
\end{aligned}
$$

