Derivative of $\ln(x^3)$
In this article, we will be trying to show that: \[\begin{align*} \dfrac{d}{dx}(\ln(x^3)) = \boxed{\dfrac3x}. \end{align*}\] To start our proof, we will use the Power Rule for logarithms, which tells us $\ln(x^n) = n \ln (x)$. Using this rule, we get that $\ln(x^3) = 3\ln(x)$. Using the fact that $\dfrac{d}{dx} (\ln(x)) = \dfrac{1}{x}$, we have: \[\begin{align*}…
Read article